Differential Equations in the Spectral Parameter, Darboux Transformations and a Hierarchy of Master Symmetries for KdV

Jorge P. Zubelli^{1,*} and Franco Magri^{2,**}

¹ Department of Mathematics, University of California, Berkeley, CA 94720, USA

² Mathematical Sciences Research Institute, University of California, Berkeley, CA 94720, USA

Received November 29, 1990; in revised form April 30, 1991

Abstract. We study a certain family of Schrödinger operators whose eigenfunctions $\varphi(x, \lambda)$ satisfy a differential equation in the spectral parameter λ of the form $B(\lambda, \partial_{\lambda})\varphi = \Theta(x)\varphi$. We show that the flows of a hierarchy of master symmetries for KdV are tangent to the manifolds that compose the strata of this class of *bispectral* potentials. This extends and complements a result of Duistermaat and Grünbaum concerning a similar property for the Adler and Moser potentials and the flows of the KdV hierarchy.

1. Introduction

The theory of solitons is still a source of surprises and unexpected connections. The purpose of this article is to report another one of these connections. More specifically, the link between a hierarchy of nonlinear evolution equations closely related to the Korteweg-de Vries (KdV) equation and the *bispectral problem*, which was introduced in [8]. This problem, for the Schrödinger operator $L = -\partial_x^2 + u$, can be formulated as follows: When do the solutions $\varphi(x, \lambda)$ of

$$L\phi = \lambda\phi \tag{1}$$

also satisfy a differential equation in the spectral parameter λ of the form

$$B(\lambda, \partial_{\lambda})\varphi = \Theta(x)\varphi, \qquad (2)$$

where $B(\lambda, \partial_{\lambda})$ is a differential operator of positive order and $\Theta(x)$ is independent of λ ? The solution to this problem, under very mild assumptions on u(x), turns out to be related to the theory of the KdV equation

$$u_t = -u_{xxx} + 6u_x u \tag{3}$$

^{*} Present address: Department of Mathematics, University of California, Santa Cruz, CA 95064, USA

^{**} Present address: Departimento di Matematica, Università di Milano, I-20133 Milano, Italy