Discrete Versions of Some Classical Integrable Systems and Factorization of Matrix Polynomials

Jürgen Moser¹ and Alexander P. Veselov²

¹ Forschungsinstitut für Mathematik, ETH Zürich, CH-8092 Zürich, Switzerland

² Moscow State University, Moscow, USSR

Received March 1, 1989; in revised form January 11, 1991

Abstract. Discrete versions of several classical integrable systems are investigated, such as a discrete analogue of the higher dimensional force-free spinning top (Euler-Arnold equations), the Heisenberg chain with classical spins and a new discrete system on the Stiefel manifold. The integrability is shown with the help of a Lax-pair representation which is found via a factorization of certain matrix polynomials. The complete description of the dynamics is given in terms of Abelian functions; the flow becomes linear on a Prym variety corresponding to a spectral curve. The approach is also applied to the billiard problem in the interior of an *N*-dimensional ellipsoid.

Table of Contents

	Introduction	
1.	Discrete Version of the Dynamics of a Rigid Body.	. 221
	1.1. The Equation of "Motion"	. 221
	1.2. The Solution of the Matrix Eq. (6): $\omega^{T}J - J\omega = M$. 224
	1.3. Isospectral Deformations	. 226
	1.4. The Symplectic Geometry of Eq. (6)	. 227
	1.5. The Integration of the Discrete Euler Equation	. 230
	1.6. Explicit Formulas for the Discrete Dynamics of the 3-Dimensional Rigid Body.	. 233
2.	The Discrete Dynamics on Stiefel Manifolds and the Heisenberg Chain	
	with Classical Spins	
	2.1. The Equation of the Dynamics and Isospectral Deformations	. 235
	2.2. Discrete Version of the C. Neumann System and the Heisenberg Chain	
	with Classical Spins	
3.	The Billiard Inside an Ellipsoid	. 238
	3.1. The Splittings and Isospectral Deformations.	. 239
	3.2. Connection Between the Ellipsoidal Billiard and the Discrete	
	C. Neumann System	. 241
Re	eferences	. 242