On the Determinant of Elliptic Differential and Finite Difference Operators in Vector Bundles over $\boldsymbol{S}^{\mathbf{1}}$

D. Burghelea ${ }^{1, \star}$, L. Friedlander ${ }^{2, \star}$, and T. Kappeler ${ }^{3, \star}$
${ }^{1}$ Department of Mathematics, Ohio State University, Columbus, OH 43210-1174, USA
${ }^{2}$ Department of Mathematics, University of California, Los Angles, CA 90024, USA
${ }^{3}$ Department of Mathematics, Brown University, Providence, RI 02912, USA

Received May 14, 1990; in revised form September 12, 1990

Abstract

For an elliptic differential operator A over $S^{1}, A=\sum_{k=0}^{n} A_{k}(x) D^{k}$, with $A_{k}(x)$ in $\operatorname{END}\left(\mathbb{C}^{r}\right)$ and θ as a principal angle, the ζ-regularized determinant $\operatorname{Det}_{\theta} A$ is computed in terms of the monodromy map P_{A}, associated to A and some invariant expressed in terms of A_{n} and A_{n-1}. A similar formula holds for finite difference operators. A number of applications and implications are given. In particular we present a formula for the signature of A when A is self adjoint and show that the determinant of A is the limit of a sequence of computable expressions involving determinants of difference approximation of A.

1. Introduction and Summary of the Results

In this paper we study the determinant of elliptic differential operators on a complex vector bundle $E \xrightarrow{p} M$ of rank N over a compact oriented connected manifold M of dimension 1 , as well as the determinants of its finite difference approximations. For this purpose we introduce a new invariant S_{θ} which, in the case of odd order self adjoint operators, calculates the η-invariant (Corollary 5.4).

In order to state the first main theorem we have to introduce the following notions for elliptic differential operators.
(1) The monodromy map P_{A} : Denote by $\Gamma(E)$ the smooth sections of $E \xrightarrow{p} M$. For an elliptic differential operator $A: \Gamma(E) \rightarrow \Gamma(E)$ of order $n \geqq 1$ consider the lift $\tilde{A}: \Gamma(\tilde{E}) \rightarrow \Gamma(\tilde{E})$, where $\tilde{E} \xrightarrow{\tilde{p}} \tilde{M}$ is the pullback of $E \xrightarrow{p} M_{\tilde{A}}$ by the universal covering $\tilde{M} \rightarrow M$. Due to the ellipticity of A, the nullspace $\operatorname{Null}(\tilde{A})$ has dimension $n N$. The fundamental group $\pi_{1}(M, *)=\mathbb{Z}$ (with 1 corresponding to the orientation of M)

[^0]
[^0]: * Partially supported by an NSF grant

