On the Determinant of Elliptic Differential and Finite Difference Operators in Vector Bundles over S^1

D. Burghelea^{1,*}, L. Friedlander^{2,*}, and T. Kappeler^{3,*}

¹ Department of Mathematics, Ohio State University, Columbus, OH 43210-1174, USA

² Department of Mathematics, University of California, Los Angles, CA 90024, USA

³ Department of Mathematics, Brown University, Providence, RI 02912, USA

Received May 14, 1990; in revised form September 12, 1990

Abstract. For an elliptic differential operator A over S^1 , $A = \sum_{k=0}^n A_k(x)D^k$, with $A_k(x)$ in END(\mathbb{C}^r) and θ as a principal angle, the ζ -regularized determinant $\text{Det}_{\theta} A$ is computed in terms of the monodromy map P_A , associated to A and some invariant expressed in terms of A_n and A_{n-1} . A similar formula holds for finite difference operators. A number of applications and implications are given. In particular we present a formula for the signature of A when A is self adjoint and show that the determinant of A is the limit of a sequence of computable expressions involving determinants of difference approximation of A.

1. Introduction and Summary of the Results

In this paper we study the determinant of elliptic differential operators on a complex vector bundle $E \xrightarrow{p} M$ of rank N over a compact oriented connected manifold M of dimension 1, as well as the determinants of its finite difference approximations. For this purpose we introduce a new invariant S_{θ} which, in the case of odd order self adjoint operators, calculates the η -invariant (Corollary 5.4).

In order to state the first main theorem we have to introduce the following notions for elliptic differential operators.

(1) The monodromy map P_A : Denote by $\Gamma(E)$ the smooth sections of $E \xrightarrow{p} M$. For an elliptic differential operator $A: \Gamma(E) \to \Gamma(E)$ of order $n \ge 1$ consider the lift $\tilde{A}: \Gamma(\tilde{E}) \to \Gamma(\tilde{E})$, where $\tilde{E} \xrightarrow{\tilde{p}} \tilde{M}$ is the pullback of $E \xrightarrow{p} M$ by the universal covering $\tilde{M} \to M$. Due to the ellipticity of A, the nullspace Null (\tilde{A}) has dimension nN. The fundamental group $\pi_1(M, *) = \mathbb{Z}$ (with 1 corresponding to the orientation of M)

^{*} Partially supported by an NSF grant