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Abstract. Solutions to the Knizhnik—Zamolodchikov equation for Verma modules
of the Lie algebra sl(n+ 1,C) are explicitly given by certain integrals called
Aomoto-Gelfand hypergeometric functions.

1. Introduction

The starting point of our study was the result of Christe and Flume [4], which
gave explicit integral representations of the 4-point functions of the SU(2)
Wess—Zumino—-Witten model as solutions to the Knizhnik—Zamolodchikov
equation. Similar results were previously obtained by Zamolodchikov and Fateev
[13]. On the other hand, Aomoto [1],[2] studied the integrals of the following
kind and derived a system of differential equations for them with respect to variables
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Here ¢ are rational functions whose poles are contained in the diagonal set
U {ti=z,}u U {ti=t;}u U {z,=1z,}, and A, v;j, u are complex parameters. This

kmd of lntegrals are generallzatlons of hypergeometric function, and Gelfand and
others studied a class of generalized hypergeometric functions including (1.1) ([12]).
We call them ‘Aomoto—Gelfand hypergeometric functions’.

If the parameters 4, v;;, 4, take certain values, then the integral (1.1) reduces
to the one of Christe and Flume. In this case, Aomoto’s differential equation is
nothing but the Knizhnik—Zamolodchikov equation. A similar result on the n-point
functions was obtained by Date et al. [6].

In this paper, we shall generalize the last result to the SU(n) Knizhnik—
Zamolodchikov equation. We briefly sketch our construction.



