Commun. Math. Phys. 134, 65-77 (1990)

An Application of Aomoto–Gelfand Hypergeometric Functions to the SU(n) Knizhnik–Zamolodchikov Equation

Atsushi Matsuo

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan

Received February 2, 1990

Abstract. Solutions to the Knizhnik-Zamolodchikov equation for Verma modules of the Lie algebra $\mathfrak{sl}(n+1,\mathbb{C})$ are explicitly given by certain integrals called Aomoto-Gelfand hypergeometric functions.

1. Introduction

The starting point of our study was the result of Christe and Flume [4], which gave explicit integral representations of the 4-point functions of the SU(2) Wess-Zumino-Witten model as solutions to the Knizhnik-Zamolodchikov equation. Similar results were previously obtained by Zamolodchikov and Fateev [13]. On the other hand, Aomoto [1], [2] studied the integrals of the following kind and derived a system of differential equations for them with respect to variables z_1, \ldots, z_N :

$$\int \boldsymbol{\Phi} \boldsymbol{\varphi} \, dt_1 \cdots dt_m,$$

$$\boldsymbol{\Phi} = \prod_{i,a} (t_i - z_a)^{\lambda_{a_i}} \prod_{i,j} (t_i - t_j)^{\mathbf{v}_{ij}} \prod_{a,b} (z_a - z_b)^{\mu_{ab}}.$$
 (1.1)

Here φ are rational functions whose poles are contained in the diagonal set $\bigcup_{i,a} \{t_i = z_a\} \cup \bigcup_{i,j} \{t_i = t_j\} \cup \bigcup_{a,b} \{z_a = z_b\}$, and $\lambda_{ai}, v_{ij}, \mu_{ab}$ are complex parameters. This kind of integrals are generalizations of hypergeometric function, and Gelfand and others studied a class of generalized hypergeometric functions including (1.1) ([12]). We call them 'Aomoto–Gelfand hypergeometric functions'.

If the parameters λ_{ai} , v_{ij} , μ_{ab} take certain values, then the integral (1.1) reduces to the one of Christe and Flume. In this case, Aomoto's differential equation is nothing but the Knizhnik-Zamolodchikov equation. A similar result on the *n*-point functions was obtained by Date et al. [6].

In this paper, we shall generalize the last result to the SU(n) Knizhnik-Zamolodchikov equation. We briefly sketch our construction.