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Abstract. The purpose of this note is to remark that Theorem 3.7 in [1], when
combined with the work of Bismut and Freed [2], leads, in the algebraic case,
to an improvement of both results concerning the holonomy of determinant
line bundles.

So let f:X^Y be a smooth proper map between projective complex manifolds.
Choose a metric h on the relative tangent space Tx/Y and a smooth complement
THX to Tx/Y in TX. We assume that (/, THX, h) is a Kahler fibration in the sense of
[3], i.e. there exists a closed (1,1) form ω on X for which Tx/Y and THX are
orthogonal, and ω restricts to the (1,1) form associated to h on Tx/Y.

Let E be an algebraic vector bundle on X, endowed with a smooth Hermitian
metric hE. The (algebraic) determinant line bundle

may then be equipped with its Quillen metric [3], whose associated connection we
denote by VQ.

Given a smooth loop
y:S1-^Y

we want to compute the holonomy of VQ along y. By pulling back / along y we get a
commutative diagram of real manifolds,
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with TM^y*(TΛ:/y)e/y*(T51) (because of the choice of THX). Endow TM with the

orthonormal direct sum of y*(h) with the metric on TS1 giving norm one to — and
at

invariant by rotation. Let D be the Dirac operator acting on the sections of


