Commun. Math. Phys. 131, 219-220 (1990)

The Holonomy of the Determinant of Cohomology of an Algebraic Bundle

H. Gillet¹ and C. Soulé²

 ¹ Department of Mathematics, University of Illinois at Chicago, Box 4348, Chicago, Il 60680, USA
² I.H.E.S., 35, Route de Chartres, F-91440 Bures-sur-Yvette, France

Abstract. The purpose of this note is to remark that Theorem 3.7 in [1], when combined with the work of Bismut and Freed [2], leads, in the algebraic case, to an improvement of both results concerning the holonomy of determinant line bundles.

So let $f: X \to Y$ be a smooth proper map between projective complex manifolds. Choose a metric *h* on the relative tangent space $T_{X/Y}$ and a smooth complement $T^H X$ to $T_{X/Y}$ in *TX*. We assume that $(f, T^H X, h)$ is a Kähler fibration in the sense of [3], i.e. there exists a closed (1, 1) form ω on *X* for which $T_{X/Y}$ and $T^H X$ are orthogonal, and ω restricts to the (1, 1) form associated to *h* on $T_{X/Y}$.

Let E be an algebraic vector bundle on X, endowed with a smooth Hermitian metric h_E . The (algebraic) determinant line bundle

$$\lambda(E) = \det Rf_{\star}(E)$$

may then be equipped with its Quillen metric [3], whose associated connection we denote by V_Q .

Given a smooth loop

$$\gamma: S^1 \to Y$$

we want to compute the holonomy of V_Q along γ . By pulling back f along γ we get a commutative diagram of real manifolds,

$$\begin{array}{ccc} M \xrightarrow{\gamma} X \\ \downarrow^{f_{\gamma}} & \downarrow^{f} \\ S^{1} \xrightarrow{\gamma} Y \end{array}$$

with $TM \cong \tilde{\gamma}^*(T_{X/Y}) \oplus f_{\gamma}^*(TS^1)$ (because of the choice of $T^H X$). Endow TM with the orthonormal direct sum of $\tilde{\gamma}^*(h)$ with the metric on TS^1 giving norm one to $\frac{d}{dt}$ and invariant by rotation. Let D be the Dirac operator acting on the sections of