Ising Model on the Generalized Bruhat-Tits Tree

Yu. M. Zinoviev

Steklov Mathematical Institute, GSP-1, SU-117333 Moscow, USSR

Abstract. The partition function and the correlation functions of the Ising model on the generalized Bruhat-Tits tree are calculated. We computed also the averages of these correlation functions when the corresponding vertices are attached to the boundary of the generalized Bruhat-Tits tree.

1. Introduction

The Ising model on the Cayley tree turns out to be very interesting [1,2]. The Cayley tree T is manifestly determined to be a connected infinite graph with no loops, each vertex of T being connected with exactly p+1 nearest neighbour vertices by links. If p is a prime number, the Cayley tree is called the Bruhat-Tits tree. The branch B_z is defined to be a connected subtree with the only boundary vertex z of the graph $T \setminus B_z$ in the interior of T. By definition the branch contains no cycles. Let us introduce the generalized Bruhat-Tits tree F_{q} . It consists of a finite connected graph F_g^R with g independent loops, which is called a *reduced* graph, the branches B_x , $x \in F_g^R$, and each vertex is connected by links with exactly p + 1 nearest neighbours (for every link, two endpoints of which are identified with a vertex, we include the vertex itself twice into the number of its nearest neighbours). If the vertex $x \in F_g^R$ has only one nearest neighbour $y \in F_g^R$, $x \neq y$, then p branches B_x and the link [x, y] form the branch B_y . Hence instead of the reduced graph F_g^R we may consider the reduced graph $F_q^R \setminus [x, y]$. From now on F_0^R is merely a single vertex and p+1 branches should be added to this vertex in order to construct the Bruhat-Tits tree $F_0 = T$, for g > 0 each vertex $x \in F_g^R$ has $2 \le n(x) \le p + 1$ nearest neighbours in F_g^R and b(x) = p + 1 - n(x) branches should be added to x in order to construct the generalized Bruhat-Tits tree F_q . Due to [3–5] the Bruhat-Tits tree $T \equiv F_0$ may be interpreted as the coset space $PGL(2, \mathbb{Q}_p)/PGL(2, \mathbb{Z}_p)$, where $PGL(2, \mathbb{K})$ is the group of fractional linear transformations of the projective line $P^{1}(\mathbb{K})$ over a ring **K** (we deal with the field of *p*-adic numbers \mathbf{Q}_p and with the ring of the *p*-adic integers \mathbb{Z}_p). The element of $GL(2, \mathbb{Q}_p)$ is called hyperbolic if it has eigenvalues which p-adic norms are different. A Schottky group Γ_q is a free subgroup of $PGL(2, \mathbf{Q}_p)$ with g generators, all non-unit elements of which are hyperbolic. Usually the generalized Bruhat-Tits tree F_g may be interpreted as a coset space T/Γ_g , where Γ_g is some Schottky group [4–6].

Since the configuration σ takes the values ± 1 the Ising model action may be rewritten in the form

$$\beta \sum_{|x-y|=1} \sigma(x)\sigma(y) = \beta N_1 - \beta/2 \sum_{|x-y|=1} (\sigma(x) - \sigma(y))^2,$$