Schrödinger Operator with a Nonlocal Potential whose Absolutely Continuous and Point Spectra Coexist

A. L. Figotin and L. A. Pastur

Institute for Low Temperature Physics and Engineering, UkrSSR Academy of Science, SU-310164 Kharkov, USSR

Abstract. We consider the Schrödinger-like operator H in which the role of a potential is played by the lattice sum of rank 1 operators $|v_n\rangle\langle v_n|$ multiplied by $g \tan \pi[(\alpha, n) + \omega]$, g > 0, $\alpha \in \mathbb{R}^d$, $n \in \mathbb{Z}^d$, $\omega \in [0, 1]$. We show that if the vector α satisfies the Diophantine condition and the Fourier transform support of the functions $v_n(x) = v(x - n)$, $x \in \mathbb{R}^d$, $n \in \mathbb{Z}^d$, is small then the spectrum of H consists of a dense point component coinciding with \mathbb{R} and an absolutely continuous component coinciding with $[\varrho, \infty)$, where ϱ is the radius of the mentioned support. Besides, we find the integrated density of states $N(\lambda)$ (it has a jump at $\lambda = \varrho$) and zero temperature a.c. conductivity $\sigma_{\lambda}(v)$, that also has a jump at $\lambda = \varrho$ and vanishes faster than any power of the external field frequency v as $v \to 0$ and $\lambda \neq \varrho$.

1. Main Results and Discussion

The present work is devoted to the spectral analysis of an operator

$$H = -(2\pi)^{-2}\varDelta + Q$$
 (1.1)

on $L_2(\mathbb{R}^d)$. Here Δ is the Laplace operator and the operator Q (a pseudopotential) has the form

$$Q = \sum_{n \in \mathbb{Z}^d} t_n |v_n\rangle \langle v_n|, \qquad (1.2)$$

$$(|v_n\rangle\langle v_n|\varphi) \quad (x) = v_n(x) \quad (v_n,\varphi) , \qquad v_n(x) = v(x-n) ,$$

$$t_n = \tan \pi [(\alpha, n) + \omega], \quad \omega \in [0, 1)$$
(1.3)

 $\omega \neq \frac{1}{2} - (\alpha, n) \pmod{1}, \qquad n \in \mathbb{Z}^d, \tag{1.4}$

the vector $\alpha \in \mathbb{R}^d$ satisfying a Diophantine condition

$$|(\alpha, n) - m| \ge C|n|^{-\beta}, m \in \mathbb{Z}, \qquad n \in \mathbb{Z}^d \setminus \{0\}$$
(1.5)

with positive constants C and β .