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Abstract. In this paper we will study the nonlinear Schrδdinger equations:

idtu + ±Δu = \u\2u, (f,x)eR x R£,

It is shown that the solutions of (*) exist and are analytic in space variables
for ίe(R\{0} if φ(x) (ςH2n+1>2(Rn

x)) decay exponentially as |x|-> oo and n ̂  2.

1. Introduction and Results

We consider the nonlinear Schrδdinger equations

ίdtu + ±Δu = \u\2u, ( ί ,x)eRxR£, (1.1)

u(Q,x) = φ(x), xeR"x. (1.2)

There are many works on the global existence of solutions to (!.!)-( 1.2) in
appropriate Sobolev spaces (see [2-5,8,10-13], and references cited therein).
Furthermore it is known that (1.1)-(1.2) have a smoothing property that the
solutions become smooth for t Φ 0 even if their initial data are not smooth. More
precisely, in [7] it was shown that all solutions of (1.1)-(1.2) are smooth for t ^0
provided that the initial data in H[li/2] + 1>2(R") decay sufficiently rapidly as |x| -> oo.
Our aim of this paper is twofold. One is to show that if the initial data φ are
analytic and sufficiently small in an appropriate norm, then the solutions of
(!.!)-( 1.2) exist globally in time and are analytic in space variables. The other is
to show that if the initial data φ in Jf f 2 l I + 1 2(R£) decay exponentially as |x|-»oo
and are sufficiently small in an appropriate norm, then the solutions of (1.1)-(1.2)
exist globally in time and are analytic in space variables for ίelR\{0}.

We give notation and function spaces used in this paper.

Notation and Function Spaces. We let LP(IR") = {/(x);/(x) is measurable on R",
/ \ I / P

< °°}> where 1/MlzΛoφ = ί \f(x)\pdx if 1 g p < oo and l/ίx)^ =
\Rj /


