Commun. Math. Phys. 128, 213-230 (1990)

Area-Preserving Diffeomorphisms and Higher-Spin Algebras

E. Bergshoeff¹, M. P. Blencowe² and K. S. Stelle²

¹ Theorey Division, CERN, CH-1211 Geneva 23, Switzerland

² The Blackett Laboratory, Imperial College, London SW7, England

Abstract. We show that there exists a one-parameter family of infinitedimensional algebras that includes the bosonic d=3 Fradkin-Vasiliev higher-spin algebra and the non-Euclidean version of the algebra of area-preserving diffeomorphisms of the two-sphere S^2 as two distinct members. The non-Euclidean version of the area preserving algebra corresponds to the algebra of area-preserving diffeomorphisms of the hyperbolic space $S^{1,1}$, and

can be rewritten as $\lim_{N\to\infty} su(N, N)$. As an application of our results, we formulate

a new d = 2 + 1 massless higher-spin field theory as the gauge theory of the area-preserving diffeomorphisms of $S^{1,1}$.

1. Introduction

Infinite-dimensional Lie algebras play an increasingly important role in the development of theoretical physics. One of the best-known examples is the Virasoro algebra, which underlies the physics of two-dimensional conformal field theories. As such, they are important for string theories and for critical phenomena in certain statistical-mechanical models.

Recently, two new types of infinite-dimensional Lie algebras have become relevant. One of them is the algebra of volume-preserving diffeomorphisms of a manifold \mathcal{M} , which we denote by $s \operatorname{diff}(\mathcal{M})$. This algebra is a subalgebra of the general diffeomorphism algebra of \mathcal{M} and corresponds to the residual symmetry of an extended object in the light-cone gauge. A basic example of such an algebra is $s \operatorname{diff}(S^2)$. This algebra occurs in the description of a spherical membrane, which can be viewed as a gauge theory of $s \operatorname{diff}(S^2)$. An interesting feature of the algebra $s \operatorname{diff}(S^2)$ is that it can be obtained by taking the limit as $N \to \infty$ of the finite-dimensional Lie algebra su(N), i.e., $s \operatorname{diff}(S^2) = \lim_{N \to \infty} su(N)$ [1]. Replacing the

gauge theory of $s \operatorname{diff}(S^2)$ by a gauge theory of su(N) then provides a form of regularization. The original spherical membrane theory is reobtained in the limit $N \to \infty$.