Commun. Math. Phys. 124, 217-227 (1989)

Communications in Mathematical Physics © Springer-Verlag 1989

An Estimate from Above of the Number of Periodic Orbits for Semi-Dispersed Billiards

Luchezar Stojanov*

Institute of Mathematics, Bulgarian Academy of Sciences, BG-1090 Sofia, Bulgaria

Abstract. For a large class of semi-dispersed billiards an exponential estimate from above is found for the number of periodic points of the billiard ball map.

1. Introduction and Main Results

Let Q be a domain (bounded or unbounded) in \mathbb{R}^d , $d \ge 2$, with the boundary

$$\partial Q = \Gamma = \Gamma_1 \cup \Gamma_2 \cup \dots \cup \Gamma_s \quad (s \ge 3),$$

where each Γ_i is a compact convex C^2 -smooth (d-1)-dimensional submanifold of \mathbb{R}^d with piecewise smooth boundary $\partial \Gamma_i$, and

$$\Gamma_i \cap \Gamma_i \subset \partial \Gamma_i \cup \partial \Gamma_i$$

whenever $i \neq j$. Each $\partial \Gamma_i$ is the union of a finite number of compact (d-2)-dimensional submanifolds of \mathbb{R}^d . If $\partial \Gamma_i \neq \emptyset$, then clearly Γ_i is the boundary of a compact convex domain in \mathbb{R}^d .

Main Assumption. In the sequel we assume that each Γ_i is contained in the boundary of a convex domain in \mathbb{R}^d . Therefore if K_i is the convex hull of Γ_i , then $\Gamma_i \subset \partial K_i$.

The points of

$$\check{\Gamma} = (\Gamma_1 \setminus \partial \Gamma_1) \cup \cdots \cup (\Gamma_s \setminus \partial \Gamma_s)$$

will be called *regular points* of Γ . For $q \in \mathring{\Gamma}$ we denote by N(q) the normal unit vector to Γ at q directed to the interior of Q. With respect to this framing the second fundamental form of Γ is non-negative definite at each $q \in \mathring{\Gamma}$.

We consider the billiard in Q, that is the dynamical system generated by the motion of material point in Q (see [4, 13]). The point is moving with constant velocity in the interior of Q with reflections at ∂Q according to the rule "the angle of incidence is equal to the angle of reflection."

^{*} Partially supported by the Bulgarian Committee of Sciences, Grant No. 52