Algebraic Study on the Super-KP Hierarchy and the Ortho-Symplectic Super-KP Hierarchy

Kimio Uneo ${ }^{1}$, Hirofumi Yamada ${ }^{2}$ and Kaoru Ikeda ${ }^{2}$
${ }^{1}$ Department of Mathematics, Waseda University, 3-4-1 Ohkubo, Shinjuku-Ku, Tokyo 160, Japan
${ }^{2}$ Department of Mathematics, Tokyo Metropolitan University, 2-1-1 Fukasawa, Setagaya-Ku, Tokyo 158, Japan

Abstract

Bilinear residue formulas are established for the super-KP hierarchy and the ortho-symplectic super-KP hierarchy. Furthermore, superframes corresponding to the ortho-symplectic super-KP hierarchy are completely characterized. Soliton solutions to the super-KP hierarchy are given.

1. Introduction

This paper is devoted to algebraic study of super-wave functions and soliton solutions of the super Kadomtsev-Petviashvili (SKP) hierarchy and the orthosymplectic (OSp) SKP hierarchy.

The SKP hierarchy was first introduced by Manin-Rudal [12] and was extensively studied by Ueno-Yamada [17-20], Yamada [21], Mulase [13], Ikeda [9] and Radul [14]. Especially, in [19] we proved that the SKP hierarchy equivalently leads to the super-Grassmann equation that connects a point in the universal super-Grassmann manifold $U S G M$ with an initial data of a solution. In that argument, the Birkhoff (Riemann-Hilbert) decomposition in the group of super-microdifferential operators plays a key role. However this operator formalism is rather inconvenient for treating geometrical solutions such as soliton solutions and super-quasi-periodic solutions. We therefore require a super-wave function, as in the case of the ordinary soliton theory.

The theory of the KP hierarchy itself is explained as follows [2,6,15, 16]: Let \mathscr{R} be the ring of formal power series over $\mathbf{C}, \mathscr{R}=\mathbf{C}[[x, t]]$ (x is a space variable and $t=\left(t_{1}, t_{2}, t_{3}, \ldots\right)$ an infinite number of time variables.). The algebra \mathscr{R} is a differential algebra with a derivation $\partial_{x}=\partial / \partial x$. By \mathscr{E}_{∞} we denote the ring of microdifferential operators over \mathscr{R},

$$
\mathscr{E}_{\mathscr{R}}=\mathscr{R}\left(\left(\partial_{x}^{-1}\right)\right)=\left\{\sum_{-\infty<v<+\infty} p_{v}(x, t) \partial_{x}^{v} \mid p_{v}(x, t) \in \mathscr{R}\right\} .
$$

A wave operator

$$
\begin{equation*}
W=W\left(x, t, \partial_{x}\right)=\sum_{j=0}^{\infty} w_{j}(x, t) \partial_{x}^{-j} \quad\left(w_{0}=1\right) \tag{1.1}
\end{equation*}
$$

