Erratum

The Quantum Theory of Second Class Constraints: Kinematics

H. Grundling¹ and C. A. Hurst²

¹ Department of Mathematics, Australian National University, Canberra, ACT 2601, Australia ² Department of Mathematical Physics, University of Adelaide, GPO Box 498, Adelaide,

S. Australia 5001

Commun. Math. Phys. 119, 75 (1988)

In the proof of Lemma 3.2, [1], we proved that if for all $U \in \langle \mathscr{U} \rangle$ of the form $U = \sum_{\ell} \lambda_{\ell} U_{\ell}, U_{\ell} \in \langle \mathscr{U} \rangle$ we have $\sum \lambda_{\ell} = 1$, then $\mathbf{1} \notin C^*(\mathscr{U} - \mathbf{1})$. This proof is wrong because not all positive elements $A \in C^*(\mathscr{U})_+$ can be written as $A = B^*B$ with $B = \sum \lambda_{\ell} U_{\ell}$, though the set of such elements is of course dense in $C^*(\mathscr{U})_+$. Hence the proven inequality $\omega(B^*B) \ge 0$ is not sufficient to ensure that ω is positive, so it does not follow that ω extends from the *-algebra generated by \mathscr{U} to $C^*(\mathscr{U})$. In fact we know that in general this part of Lemma 3.2 is wrong:

Assertion. There is no general condition on the *-algebra generated by a set of constraints \mathcal{U} which is equivalent to $\mathbf{1} \in C^*(\mathcal{U} - \mathbf{1})$.

Proof. We exhibit a *-algebra \mathscr{K} containing a group of unitaries \mathscr{U} , and complete it in two different C^* -norms. In one of the resulting C^* -algebras we will have $\mathbf{1} \in C^*(\mathscr{U} - \mathbf{1})$, and in the other $\mathbf{1} \notin C^*(\mathscr{U} - \mathbf{1})$.

Let G be a discrete group acting on a unital C*-algebra \mathscr{F} with the action $\alpha: G \mapsto \operatorname{Aut} \mathscr{F}$. Construct $\widetilde{\mathscr{F}} := M(G_{\alpha} \times \mathscr{F})$ which contains \mathscr{F} and a faithful unitary representation $U: G \mapsto \widetilde{\mathscr{F}}_{u}$ of G which implements α , i.e. $\alpha_{g} = \operatorname{Ad} U_{g}$. So U_{G} is a group.

Lemma 1. $U_G \subset \widetilde{\mathscr{F}}$ is a linearly independent set.

Proof. $(U_g f)(r) := \alpha_g(f(g^{-1}r)) \ \forall g, r \in G, \ \forall f \in \ell^1(G, \mathscr{F}), \ \text{where} \ \ell^1(G, \mathscr{F}) :=$ $\left\{ f : G \mapsto \mathscr{F} \mid_{g \in G} \| f(g) \| < \infty \right\}.$ Assume U_G is linearly dependent, i.e. $\exists \beta_k \in \mathbb{C} \setminus 0, \ g_k \in G \ \text{all different and} \ N < \infty \ \text{such that} \ \sum_{k=1}^N \beta_k U_{g_k} = 0.$ Hence $\forall f \in \ell^1(G, \mathscr{F}) \ \text{we have} \ \sum_{k=1}^N \beta_k \alpha_{g_k}(f(g_k^{-1}r)) = 0.$ Choose $f(r) := \mathbf{1}\delta(r, e).$ Then $\sum_{k=1}^N \beta_k \mathbf{1}\delta(g_k^{-1}r, e) = 0 \ \forall r \in G, \ \text{so for} \ r = g_k \ \text{this implies} \ \beta_k = 0, \ \text{which contradicts our} \ \text{assumption.}$

Take $\mathscr{U} = U_G$ for the chosen constraint set, let the *-algebra \mathscr{K} be generated by U_G , hence it is the linear space generated by U_G . Let the C*-algebra \mathscr{A} be the C*-