Erratum

The Quantum Theory of Second Class Constraints: Kinematics

H. Grundling ${ }^{1}$ and C. A. Hurst ${ }^{2}$
${ }^{1}$ Department of Mathematics, Australian National University, Canberra, ACT 2601, Australia
${ }^{2}$ Department of Mathematical Physics, University of Adelaide, GPO Box 498. Adelaide,
S. Australia 5001

Commun. Math. Phys. 119, 75 (1988)

In the proof of Lemma 3.2, [1], we proved that if for all $U \in\langle\mathscr{U}\rangle$ of the form $U=\sum_{t} \lambda_{t} U_{t}, U_{t} \in\langle\mathscr{U}\rangle$ we have $\sum \lambda_{t}=1$, then $\mathbb{1} \notin C^{*}(\mathscr{U}-\mathbb{1})$. This proof is wrong because not all positive elements $A \in C^{*}(\mathscr{U})_{+}$can be written as $A=B^{*} B$ with $B=\sum \lambda_{t} U_{t}$, though the set of such elements is of course dense in $C^{*}(\mathscr{U})_{+}$. Hence the proven inequality $\omega\left(B^{*} B\right) \geqq 0$ is not sufficient to ensure that ω is positive, so it does not follow that ω extends from the $*$-algebra generated by $\%$ to $C^{*}(\%)$. In fact we know that in general this part of Lemma 3.2 is wrong:

Assertion. There is no general condition on the *-algebra generated by a set of constraints \mathscr{U} which is equivalent to $\mathbb{1} \in C^{*}(\mathscr{U}-\mathbb{1})$.

Proof. We exhibit a $*$-algebra \mathscr{K} containing a group of unitaries \mathscr{U}, and complete it in two different C^{*}-norms. In one of the resulting C^{*}-algebras we will have $\mathbb{1} \in C^{*}(\mathscr{U}-\mathbb{1})$, and in the other $\mathbb{1} \notin C^{*}(\mathscr{U}-\mathbb{1})$.

Let G be a discrete group acting on a unital C^{*}-algebra \mathscr{F} with the action $\alpha: G \mapsto \operatorname{Aut} \mathscr{F}$. Construct $\widetilde{\mathscr{F}}:=M\left(G_{\alpha} \times \mathscr{F}\right)$ which contains \mathscr{F} and a faithful unitary representation $U: G \mapsto \widetilde{\mathscr{F}}^{u}$ of G which implements α, i.e. $\alpha_{g}=\operatorname{Ad} U_{g}$. So U_{G} is a group.

Lemma 1. $U_{G} \subset \tilde{\mathscr{F}}$ is a linearly independent set.
Proof. $\quad\left(U_{g} f\right)(r):=\alpha_{g}\left(f\left(g^{-1} r\right)\right) \forall g, r \in G, \quad \forall f \in \ell^{1}(G, \mathscr{F}), \quad$ where $\quad \ell^{1}(G, \mathscr{F}):=$ $\left\{f: G \mapsto \mathscr{F} \mid \sum_{g \in G}\|f(g)\|<\infty\right\}$. Assume U_{G} is linearly dependent, i.e. $\exists \beta_{k} \in \mathbb{C} \backslash 0, \quad g_{k} \in G$ all different and $N<\infty$ such that $\sum_{k=1}^{N} \beta_{k} U_{g_{k}}=0$. Hence $\forall f \in \ell^{1}(G, \mathscr{F})$ we have $\sum_{k=1}^{N} \beta_{k} \alpha_{g_{k}}\left(f\left(g_{k}^{-1} r\right)\right)=0$. Choose $f(r):=\mathbb{1} \delta(r, e)$. Then $\sum_{k=1}^{N} \beta_{k} \mathbb{1} \delta\left(g_{k}^{-1} r, e\right)=0 \forall r \in G$, so for $r=g_{k}$ this implies $\beta_{k}=0$, which contradicts our assumption.

Take $\mathscr{U}=U_{G}$ for the chosen constraint set, let the *-algebra \mathscr{K} be generated by U_{G}, hence it is the linear space generated by U_{G}. Let the C^{*}-algebra \mathscr{A} be the C^{*} -

