G Springer-veriag 1787

Comment

Redundancy of Conditions for a Virasoro Algebra*

Jack L. Uretsky

High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA Department of Natural Sciences, College of DuPage, Glen Ellyn, IL 60137, USA

Abstract. I show that the Fairlie, Nuyts, Zachos construction of Virasoro algebra contains redundant conditions.

Fairlie et al. [1] construct a Virasoro algebra from two starting generators and eight conditions on the commutators. I show that the eight conditions are not independent.

The authors of [1] start with two generators called L_3 and L_{-2} and the following definitions:

D1
$$5L_1 = [L_3, L_{-2}],$$

D1 $3L_{-1} = [L_1, L_{-2}],$
D1 $2L_0 = [L_1, L_{-1}],$
D1 $4L_2 = [L_2, L_{-1}],$
D1 $(n-1)L_{n+1} = [L_n, L_1]$ $n \ge 3,$
D1 $(n+1)L_{n-1} = [L_n, L_{-1}]$ $n \le -2.$

The authors then impose 8 conditions. I shall limit my discussion to positive values of the index n. The conditions that will be of interest are, then,

C1
$$[L_3, L_0] = 3L_3$$
 (Cond. 1 of ref. [1]),
C2 $[L_0, L_{-2}] = 2L_{-2}$ (Cond. 2 of ref. [1]),
C3 $[L_2, L_{-2}] = 4L_0 + 6c$ (Cond. 4 of ref. [1]),
C4 $[L_2, L_1] = L_3$ (Cond. 3 of ref. [1]),
C5 $[L_3, L_2] = L_5$ (Cond. 5 of ref. [1]),
C6 $[L_5, L_2] = L_5$ (Cond. 5 of ref. [1]).

^{*} Work supported in part by the U.S. Department of Energy, Division of High Energy Physics, Contract W-31-109-ENG-38