Eigenvalue Branches of the Schrödinger Operator $H - \lambda W$ in a Gap of $\sigma(H)$

Stanley Alama¹, Percy A. Deift¹, and Rainer Hempel²

- ¹ Courant Institute, New York University, New York, NY 10012, USA
- ² Mathematisches Institut der Universität München, Federal Republic of Germany

Abstract. The authors study the eigenvalue branches of the Schrödinger operator $H - \lambda W$ in a gap of $\sigma(H)$. In particular, they consider questions of asymptotic distribution of eigenvalues and bounds on the number of branches. They also address the completeness problem.

Introduction

Let V(x), W(x) be real bounded functions on \mathbb{R}^{v} satisfing

(a)
$$V(x) \ge 1$$
,

$$\lim_{|x| \to \infty} W(x) = 0.$$

Let H denote the self-adjoint operator $-\Delta + V$ on $L^2(\mathbf{R}^{\nu})$.

This paper is devoted to the study of three questions concerning the eigenvalue branches of the family of Schrödinger operators $H \pm \lambda W$, in a gap of $\sigma(H)$:

- (1) For $W \ge 0$ we consider the asymptotics of the number of branches which cross an energy E in the gap and which emerge from below. To be more precise, we compute the number of branches of $H + \mu W$ which cross the level $E \in \mathbf{R} \sigma(H)$ for $0 < \mu < \lambda$, as $\lambda \to \infty$.
- (2) When $W \ge 0$ and supp W is contained in B_R , the ball of radius R, we prove a semi-classical phase-space type bound on the number of eigenvalue branches of the family $H + \lambda W$, $\lambda > 0$, which cross a given level E in the gap. In particular, we show that the total number of such branches is finite and is bounded by the volume of the ball B_R ,

 #{branches $E_n(\lambda)$ which cross E} $\le C_0 R^v$,

where C_0 is independent of $W \in L^{\infty}(B_R)$, $W \ge 0$, so long as supp $W \in B_R$.

(3) We address the "completeness problem" (cf. Deift and Hempel [DH]) for W which change sign; i.e., for each E in the gap, does there exist a $\lambda > 0$ so that $E \in \sigma(H - \lambda W)$?