Commun. Math. Phys. 118, 641-649 (1988)

Communications in Mathematical Physics © Springer-Verlag 1988

Symmetric Harmonic Maps Between Spheres

Wei-Yei Ding

Institute of Mathematics, Academia Sinica, Beijing, People's Republic of China

Abstract. Necessary and sufficient conditions for the existence of symmetric harmonic maps between spheres are established.

1. Introduction

In [S], Smith studied the problem of existence of harmonic maps between Euclidean spheres. The harmonic maps he constructed are of very special type. Starting from two homogeneous harmonic polynomial maps $f: S^p \to S^m$ of homogeneity k and $g: S^q \to S^n$ of homogeneity l, Smith sought for harmonic maps from S^{p+q+1} into S^{m+n+1} which are of the following form:

$$u(x, y) = \left(\sin a(t) f\left(\frac{x}{|x|}\right), \cos a(t) g\left(\frac{y}{|y|}\right)\right), \tag{1.1}$$

where $x \in \mathbb{R}^{p+1}$, $y \in \mathbb{R}^{q+1}$, with $|x|^2 + |y|^2 = 1$, $t = \log(|x|/|y|)$, and a(t) is a real function with range in $[0, \frac{\pi}{2}]$. It is proved that if a(t) satisfies the following equation:

$$\ddot{a} + \frac{(p-1)e^{-t} - (q-1)e^{t}}{e^{t} + e^{-t}} \dot{a} + \frac{\lambda_2 e^{t} - \lambda_1 e^{-t}}{e^{t} + e^{-t}} \sin a \cos a = 0,$$

together with the conditions

$$0 \leq a(t) \leq \frac{\pi}{2}, \quad \forall t \in \mathbb{R},$$

and

$$\lim_{t \to -\infty} a(t) = 0, \qquad \lim_{t \to \infty} a(t) = \frac{\pi}{2},$$

then the map defined in (1.1) is actually an analytic harmonic map. Here $\lambda_1 = k(k+p-1)$ and $\lambda_2 = l(l+q-1)$. It is obvious that such a map is homotopic to the join f * g of f and g [which is defined by (1.1) with $\sin a(t) = |x|$ and $\cos a(t) = |y|$].

Smith proved that if $(p-1)^2 < 4\lambda_1$ and $(q-1)^2 < 4\lambda_2$ or p = q and $\lambda_1 = \lambda_2$, then there exists a harmonic map homotopic to f * g. Quite recently, Ratto [R] showed that the same conclusion holds provided $\lambda_1 = p \le 5$. In this paper, we completely solve the problem of existence of harmonic maps of Smith's type. Our main result is the following: