Commun. Math. Phys. 118, 215-240 (1988)

An Instanton-Invariant for 3-Manifolds

Andreas Floer

Courant Institute, 251 Mercer Street, New York, NY 10012, USA

Abstract. To an oriented closed 3-dimensional manifold M with $H_1(M, \mathbb{Z}) = 0$, we assign a \mathbb{Z}_8 -graded homology group $I_*(M)$ whose Euler characteristic is twice Casson's invariant. The definition uses a construction on the space of instantons on $M \times \mathbb{R}$.

Contents

1.	Instanton Homology											
	1a) Introduction											215
	1b) Connections on M											218
	1c) The General Construction											222
2.	Local Properties of $\mathcal{M}(\mathbb{R} \times M)$											227
	2a) Connections on $\mathbb{R} \times M$.											227
	2b) Fredholm Theory											228
	2c) Transversality											231
	2d) Transitivity.											232
3.	Compactness											235
	3a) Local Convergence											
	3b) Global Convergence											

1. Instanton Homology

1a) Introduction

Let M be a closed connected oriented 3-manifold. As is well known (see e.g. [He]), every 3-dimensional topological manifold carries a unique differentiable structure, so that we can consider M in either of these two categories. For the sake of brevity, we will refer to M simply as a 3-manifold.

A strong algebraic invariant of M is its fundamental group $\pi_1(M)$. Unfortunately, as a satisfactory description of the set 3-manifolds, the fundamental group falls short in two crucial ways: First, the classification of manifolds with isomorphic fundamental groups depends on the well known and as yet unsettled