Commun. Math. Phys. 115, 231-246 (1988)

Calabi-Yau Hypersurfaces in Products of Semi-Ample Surfaces

Paul Green¹ and Tristan Hübsch²

¹ Department of Mathematics, University of Maryland, College Park, MD 20742, USA

² Department of Physics and Astronomy, University of Maryland, College Park, MD 20742, USA

Abstract. We study Calabi-Yau manifolds that are embedded as hypersurfaces in products of semi-ample complex surfaces. We classify the deformation classes of the latter and thereby achieve a classification of the Calabi-Yau manifolds that are constructed in this way. Complementing the results in the existing literature, we obtain the complete Hodge diamond for all Calabi-Yau hypersurfaces in products of semi-ample surfaces.

1. Introduction

In order to explore the phenomenological implications of the Superstring theories [1], originally defined in 9+1 space-time dimensions, it was shown to be consistent to assume that the 9+1-dimensional space-time locally has the form of $M_4 \times \mathcal{M}_{CY}$, where M_4 is 3+1-dimensional Minkowski space and \mathcal{M}_{CY} is a Calabi-Yau manifold of 3 complex dimensions [2, 3]. Calabi-Yau manifolds are compact and admit a Ricci-flat Kähler metric, i.e. have a vanishing first Chern class [4].

Several examples of such manifolds were analyzed in [2, 5, 6]. Upon restriction to massless states and compactification on a \mathcal{M}_{CY} , the effective models exhibit N=1 supergravity and Yang-Mills interactions with the gauge group being a subgroup of $E_6 \times E_8$, coupled to matter superfields the spectrum of which is counted by topological invariants of \mathcal{M}_{CY} . In particular, superfields that transform as (27, 1) of $E_6 \times E_8$ are counted by the Hodge number $b_{1,2}$ while the (27*, 1)-transforming superfields are $b_{1,1}$ -fold degenerate.

In [7, 8] a huge family of Calabi-Yau manifolds was established all of which are embedded in products of complex-projective spaces as complete intersections of hypersurfaces (we shall adopt the CICY acronym [9] in what follows). Because of the fact that the Euler characteristic $\chi_E = 2(b_{1,1} - b_{1,2})$ for all Calabi-Yau manifolds, and since χ_E is computed straightforwardly for every case, the difference of the number of **27**'s and **27***'s of E_6 is readily obtained for models based on any of these manifolds. In contrast, the computation of $b_{1,2}$ and $b_{1,1}$ separately appears to be a much harder task.