Commun. Math. Phys. 114, 599-612 (1988)

Analyticity Properties of Eigenfunctions and Scattering Matrix*

Erik Balslev

University of Aarhus, Denmark and Institute for Advanced Study, Princeton, NJ 08540, USA

Abstract. For potentials $V = V(x) = O(|x|^{-2^{-e}})$ for $|x| \to \infty$, $x \in \mathbb{R}^3$, we prove that if the S-matrix of $(-\Delta, -\Delta + V)$ has an analytic extension $\tilde{S}(z)$ to a region \mathcal{O} in the lower half-plane, then the family of generalized eigenfunctions of $-\Delta + V$ has an analytic extension $\tilde{\phi}(k, \omega, x)$ to \mathcal{O} such that $|\tilde{\phi}(k, \omega, x)| < Ce^{b|x|}$ for $|\mathrm{Im}k| < b$. Consequently, the resolvent $(-\Delta + V - z^2)^{-1}$ has an analytic continuation from \mathbb{C}^+ to $\{k \in \mathcal{O} | |\mathrm{Im}k| < b\}$ as an operator $\tilde{R}(z)$ from $\mathscr{H}_b = \{f$ $= e^{-b|x|}g|g \in L_2(\mathbb{R}^3)\}$ to \mathscr{H}_{-b} . Based on this, we define for potentials $W = o(e^{-2b|x|})$ resonances of $(-\Delta + V, -\Delta + V + W)$ as poles of $(1 + W\tilde{R}(z))^{-1}$ and identify these resonances with poles of the analytically continued S-matrix of $(-\Delta + V, -\Delta + V + W)$.

Introduction

Analytic continuation of the scattering matrix of a two-body Schrödinger operator $-\Delta + V$ has been established for various classes of the potential V, including exponentially decaying [3] and dilation-analytic, short-range [4] potentials.

Two methods were developed to obtain a unified approach to these two classes of potentials, one [5] based on local spectral deformation techniques in momentum space, the other [9] based on an analytic family of deformations of the underlying momentum-space. These methods cover potentials of the form V + W, where $V = O(r^{-2-\epsilon})$ is radial, dilation-analytic and W is exponentially decaying.

For radial potentials a different method was introduced [6]. The basic idea was that if the resolvent $(-\Delta + V - k^2)^{-1}$ can be shown to have an analytic continuation to a domain \mathcal{O} in the lower half-plane as an operator from a space of exponentially decaying functions to its dual, then $-\Delta + V$ can play the role of $-\Delta$ as background for an exponentially decaying perturbation W, using analytic

^{*} The author would like to thank the Institute for Advanced Study for its hospitality and the National Science Foundation for financial support under Grant No. DMS-8610730(1)