Integrable Quantum Systems and Classical Lie Algebras

V. V. Bazhanov

Institute for High Energy Physics, Serpukhov, Moscow Region, USSR

Abstract. We have obtained six new infinite series of trigonometric solutions to triangle equations (quantum *R*-matrices) associated with the nonexceptional simple Lie algebras: sl(N), sp(N), o(N). The *R*-matrices are given in two equivalent representations: in an additive one (as a sum of poles with matrix coefficients) and in a multiplicative one (as a ratio of entire matrix functions). These *R*-matrices provide an exact integrability of anisotropic generalizations of sl(N), sp(N), o(N) invariant one-dimensional lattice magnetics and two-dimensional periodic Toda lattices associated with the above algebras.

Table of Contents

	Introduction	'1
2.	Some Information from the Theory of Simple Lie Algebras	'5
3.	Classical Triangle Equations	'7
	3.1. Classical <i>r</i> -Matrices	'7
	3.2. Classical Toda Lattices	0
4.	Quantum Triangle Equations	51
	4.1. A Simple Theorem	31
	4.2. Quantization of Trigonometric r-Matrices	2
5.	Integrable Quantum Systems	;4
	5.1. Quantum Toda Lattices	;4
	5.2. Integrable Models of Magnetics	;7
6.	Factorized Representations for Quantum R-Matrices	;7
	6.1. Preliminary Remarks	;7
	6.2. Matrix Generalizations of Trigonometric Functions	
	6.3. Two Types of ζ - and σ -Functions	
	6.4. Factorization of Quantum R-Matrices	
A	pendix A	
A	pendix B)4
	pendix C	
A	pendix D)7
Re	ferences)1

1. Introduction

In the theory of two-dimensional integrable systems of quantum field theory and statistical physics a specific importance is attached to the special system of