Existence of Solutions for Schrödinger Evolution Equations

Kenji Yajima
Department of Pure and Applied Sciences, University of Tokyo, 3-8-1 Komaba, Meguroku, Tokyo, 153 Japan

Abstract

We study the existence, uniqueness and regularity of the solution of the initial value problem for the time dependent Schrödinger equation $i \partial u / \partial t=$ $(-1 / 2) \Delta u+V(t, x) u, u(0)=u_{0}$. We provide sufficient conditions on $V(t, x)$ such that the equation generates a unique unitary propagator $U(t, s)$ and such that $U(t, s) u_{0} \in C^{1}\left(\mathbb{R}, L^{2}\right) \cap C^{0}\left(\mathbb{R}, H^{2}\left(\mathbb{R}^{n}\right)\right)$ for $u_{0} \in H^{2}\left(\mathbb{R}^{n}\right)$. The conditions are general enough to accommodate moving singularities of type $|x|^{-2+\varepsilon}(n \geqq 4)$ or $|x|^{-n / 2+\varepsilon}(n \leqq 3)$.

1. Introduction, Assumptions and Theorems

In this paper, we study the existence, uniqueness and regularity of the solution of the initial value problem for the time dependent Schrödinger equation in \mathbb{R}^{n} :

$$
\begin{align*}
& i \partial u / \partial t=-(1 / 2) \Delta u+V(t, x) u, \quad t \in[-T, T]=I_{T}, \quad x \in \mathbb{R}^{n}, \\
& u(s, x)=u_{0}(x), \tag{1.1}
\end{align*}
$$

where $\Delta=\partial^{2} / \partial x_{1}^{2}+\cdots+\partial^{2} / \partial x_{n}^{2}$ and $V(t, x)$ is a real valued function. We regard Eq. (1.1) as an evolution equation in the Hilbert space $\mathscr{H}=L^{2}\left(\mathbb{R}^{n}\right)$:

$$
\begin{equation*}
i d u / d t=H(t) u, \quad H(t)=-(1 / 2) \Delta+V(t, x), \quad u(s)=u_{0} \tag{1.2}
\end{equation*}
$$

and treat the problem by using the perturbation technique and the well-known $L^{p}-L^{q}$-type estimates for the free propagator $\exp (i t \Delta / 2)$. We shall give sufficient conditions on $V(t, x)$ such that Eq. (1.2) uniquely generates a strongly continuous unitary propagator $\{U(t, s)\}$ on \mathscr{H}, and such that $U(t, s) u_{0} \in$ $C\left(I_{T}, H^{2}\left(\mathbb{R}^{n}\right)\right) \cap C^{1}\left(I_{T}, \mathscr{H}\right)$ for every $u_{0} \in H^{2}\left(\mathbb{R}^{n}\right)$. The conditions are general enough to accommodate potentials which have moving singularities of type $|x|^{-2+\varepsilon}$ for $n \geqq 4$ and $|x|^{-n / 2+\varepsilon}$ for $n \leqq 3, \varepsilon>0$.

We consider, along with Eq. (1.2), the integral equation

$$
\begin{equation*}
u(t)=U_{0}(t-s) u_{0}-i \int_{s}^{t} U_{0}(t-\tau) V(\tau) u(\tau) d \tau \tag{1.3}
\end{equation*}
$$

where $U_{0}(t)=\exp (i t \Delta / 2)$ and $V(t)$ is the multiplication operator by $V(t, x)$. For an interval I and $m, \rho \geqq 1, L^{m, \rho}(I)$ is the Banach space of $L^{m}\left(\mathbb{R}^{n}\right)$-valued ρ-summable

