Commun. Math. Phys. 106, 395-426 (1986)

New Proofs of the Existence of the Feigenbaum Functions

H. Epstein

Institut des Hautes Etudes Scientifiques, 35, route de Chartres, F-91440 Bures-sur-Yvette, France

Abstract. A new proof of the existence of analytic, unimodal solutions of the Cvitanović-Feigenbaum functional equation $\lambda g(x) = -g(g(-\lambda x))$, $g(x) \approx 1 - \cos t |x|^r$ at 0, valid for all λ in (0, 1), is given, and the existence of the Eckmann-Wittwer functions [8] is recovered. The method also provides the existence of solutions for certain given values of r, and in particular, for r = 2, a proof requiring no computer.

0. Notations

If $z \in \mathbf{C}$, we denote z^* its complex conjugate, and reserve the notation \overline{S} to denote the closure of a set S.

Let J be an open, possibly empty interval in **R**. We denote

 $\mathbf{C}(J) = \{ z \in \mathbf{C} \colon \operatorname{Im} z \neq 0 \text{ or } z \in J \}.$

In particular, $\mathbf{C}(\emptyset) = \mathbf{C}_+ \cup \mathbf{C}_-$, where

$$C_{+} = -C_{-} = \{z \in C : \operatorname{Im} z > 0\}.$$

 $\mathbf{F}(J)$ is the real Fréchet space of functions f, holomorphic on $\mathbf{C}(J)$, with $f(z^*)^* = f(z)$, equipped with the topology of uniform convergence on compact subsets of $\mathbf{C}(J)$. $\mathbf{P}(J)$ is the subset of $\mathbf{F}(J)$ consisting of the functions f such that $f(\mathbf{C}_+) \subset \mathbf{\bar{C}}_+$, and $f(\mathbf{C}_-) \subset \mathbf{\bar{C}}_-$. These functions are often called Herglotz or Pick functions.

 $\mathbf{P}_0(J)$ is the subset of $\mathbf{P}(J)$ consisting of the functions f such that $|f(z)/z| \rightarrow 0$ as $z \rightarrow \infty$ in non-real directions.

1. Introduction

The functional equation

$$g(x) = -\frac{1}{\lambda}g(g(-\lambda x)) \tag{1.1}$$