The Analysis of Elliptic Families. I. Metrics and Connections on Determinant Bundles

Jean-Michel Bismut¹ and Daniel S. Freed²

1 Département de Mathématique, Université Paris-Sud, Bâtiment 425, F-91405 Orsay, France

2 Department of Mathematics, M.I.T., Cambridge, MA 02139, USA

Abstract. In this paper, we construct the Quillen metric on the determinant bundle associated with a family of elliptic first order differential operators. We also introduce a unitary connection on λ and calculate its curvature. Our results will be applied to the case of Dirac operators in a forthcoming paper.

In [Q2], Quillen gave a construction of a metric and of a holomorphic connection on the determinant bundle of a family of $\overline{\partial}$ operators. On the other hand, Bismut gave in [B1] a heat equation proof of the Atiyah–Singer Index Theorem for families of Dirac operators [AS1] using the superconnection formalism of Quillen [Q1]. In this paper, we extend the construction of Quillen [Q2] to the case of an arbitrary family of first order elliptic differential operators.

More precisely, let $M \xrightarrow{Z} B$ be a compact fibering of manifolds and let D_+ be a family of first order elliptic differential operators. D_+ can be considered as a smooth section of Hom $(H^{\infty}_+, H^{\infty}_-)$, where $H^{\infty}_+, H^{\infty}_-$ are infinite dimensional Hermitian bundles over B. If λ is the line bundle (det Ker D_+)* \otimes (det Coker D_+), we construct a metric and a unitary connection on λ , and we calculate the corresponding curvature.

To explain the construction, let us temporarily assume that H^{∞}_{+} , H^{∞}_{-} are instead finite dimensional Hermitian bundles over *B* which have the same dimension. In this case λ can be identified with $(\det H^{\infty}_{+})^* \otimes \det H^{\infty}_{-}$, and so is naturally endowed with a Hermitian metric $\|\cdot\|$. Clearly det D_{+} is a section of λ .

Let D_{-} be the adjoint of D_{+} , and set

$$H^{\infty} = H^{\infty}_{+} \oplus H^{\infty}_{-}; \quad D = \begin{bmatrix} 0 & D_{-} \\ D_{+} & 0 \end{bmatrix}.$$
(0.1)

Then

$$\|\det D_+\| = [\det D_-D_+]^{1/2} = [\det D^2]^{1/4}.$$
 (0.2)

Also if H^{∞}_+ , H^{∞}_- are endowed with a unitary connection $\tilde{\nabla}^{\mu}$, λ is also endowed with a unitary connection ${}^{1}\nabla$. Where D_+ is invertible, we have for $Y \in TB$,

$$\widetilde{\nabla}_Y^u \det D_+ = \det D_+ \operatorname{Tr} \left[D_+^{-1} \widetilde{\nabla}_Y^u D_+ \right]. \tag{0.3}$$

By [Q1], the graded algebra End H^{∞} is endowed with a trace Tr and a supertrace