The Analysis of Elliptic Families. I. Metrics and Connections on Determinant Bundles

Jean-Michel Bismut ${ }^{1}$ and Daniel S. Freed ${ }^{2}$
1 Département de Mathématique, Université Paris-Sud, Bâtiment 425, F-91405 Orsay, France
2 Department of Mathematics, M.I.T., Cambridge, MA 02139, USA

Abstract

In this paper, we construct the Quillen metric on the determinant bundle associated with a family of elliptic first order differential operators. We also introduce a unitary connection on λ and calculate its curvature. Our results will be applied to the case of Dirac operators in a forthcoming paper.

In [Q2], Quillen gave a construction of a metric and of a holomorphic connection on the determinant bundle of a family of $\bar{\delta}$ operators. On the other hand, Bismut gave in [B1] a heat equation proof of the Atiyah-Singer Index Theorem for families of Dirac operators [AS1] using the superconnection formalism of Quillen [Q1]. In this paper, we extend the construction of Quillen [Q2] to the case of an arbitrary family of first order elliptic differential operators.

More precisely, let $M \xrightarrow{Z} B$ be a compact fibering of manifolds and let D_{+}be a family of first order elliptic differential operators. D_{+}can be considered as a smooth section of $\operatorname{Hom}\left(H_{+}^{\infty}, H_{-}^{\infty}\right)$, where $H_{+}^{\infty}, H_{-}^{\infty}$ are infinite dimensional Hermitian bundles over B. If λ is the line bundle $\left(\operatorname{det} \operatorname{Ker} D_{+}\right)^{*} \otimes\left(\operatorname{det} \operatorname{Coker} D_{+}\right)$, we construct a metric and a unitary connection on λ, and we calculate the corresponding curvature.

To explain the construction, let us temporarily assume that $H_{+}^{\infty}, H_{-}^{\infty}$ are instead finite dimensional Hermitian bundles over B which have the same dimension. In this case λ can be identified with $\left(\operatorname{det} H_{+}^{\infty}\right)^{*} \otimes \operatorname{det} H_{-}^{\infty}$, and so is naturally endowed with a Hermitian metric $\|\cdot\|$. Clearly $\operatorname{det} D_{+}$is a section of λ.

Let D_{-}be the adjoint of D_{+}, and set

$$
H^{\infty}=H_{+}^{\infty} \oplus H_{-}^{\infty} ; \quad D=\left[\begin{array}{cc}
0 & D_{-} \tag{0.1}\\
D_{+} & 0
\end{array}\right] .
$$

Then

$$
\begin{equation*}
\left\|\operatorname{det} D_{+}\right\|=\left[\operatorname{det} D_{-} D_{+}\right]^{1 / 2}=\left[\operatorname{det} D^{2}\right]^{1 / 4} \tag{0.2}
\end{equation*}
$$

Also if $H_{+}^{\infty}, H_{-}^{\infty}$ are endowed with a unitary connection $\tilde{\nabla}^{u}, \lambda$ is also endowed with a unitary connection ${ }^{1} \nabla$. Where D_{+}is invertible, we have for $Y \in T B$,

$$
\begin{equation*}
\tilde{\nabla}_{Y}^{u} \operatorname{det} D_{+}=\operatorname{det} D_{+} \operatorname{Tr}\left[D_{+}^{-1} \tilde{\nabla}_{Y}^{u} D_{+}\right] . \tag{0.3}
\end{equation*}
$$

By [Q1], the graded algebra End H^{∞} is endowed with a trace Tr and a supertrace

