Commun. Math. Phys. 105, 123-131 (1986)

Sufficient Subalgebras and the Relative Entropy of States of a von Neumann Algebra

Dénes Petz

Mathematisches Institut der Universität Tübingen, Auf der Morgenstelle 10, D-7400 Tübingen, Federal Republic of Germany

Abstract. A subalgebra M_0 of a von Neumann algebra M is called weakly sufficient with respect to a pair (ϕ, ω) of states if the relative entropy of ϕ and ω coincides with the relative entropy of their restrictions to M_0 . The main result says that M_0 is weakly sufficient for (ϕ, ω) if and only if M_0 contains the Radon-Nikodym cocycle $[D\phi, D\omega]_t$. Other conditions are formulated in terms of generalized conditional expectations and the relative Hamiltonian.

Introduction

Suppose that an experiment is described by a measurable space (X, \mathscr{S}) and the outcome of the experiment is governed by a probability measure μ on \mathscr{S} . In mathematical statistics the probability distribution μ belongs to a family Θ of probability distributions. A sub- σ -algebra \mathscr{R} of \mathscr{S} can be considered as application of a statistics or an indirect observation. \mathscr{R} is defined to be sufficient with respect to the family Θ if the conditional distribution of $\mu \in \Theta$ does not depend on μ . More precisely, for every $S \in \mathscr{S}$ there exist an \mathscr{R} -measurable function ξ_S such that $\int \xi_S d\mu$

 $=\mu(R \cap S)$ for every $R \in \mathscr{R}$ and $\mu \in \Theta$ (see [12 or 7, 28]). In mathematical statistics the case $|\Theta|=2$ is called the discrimination between two statistical hypotheses.

Let $\Theta = {\mu, \nu}$, and assume that $\mu, \nu \ll \lambda$. Halmos and Savage ([12]) proved that \mathscr{R} is sufficient for ${\mu, \nu}$ if and only if the function

$$\frac{d\mu}{d\lambda} \bigg| \frac{d\nu}{d\lambda}$$

is \mathscr{R} -measurable. Another equivalent formulation due to Kullback and Leibler [18] is based on the relative entropy of measures. Namely, \mathscr{R} is sufficient if and only if

$$S(\mu, \nu) = S(\mu_0, \nu_0),$$

Permanent address: Mathematical Institute of HAS, Reáltanoda u. 13-15, H-1364 Budapest, P.O. Box. 127, Hungary