Map Dependence of the Fractal Dimension Deduced from Iterations of Circle Maps

P. Alstrøm
H. C. Ørsted Institute, Universitetsparken 5, Copenhagen, Denmark

Abstract

Every orientation preserving circle map g with inflection points, including the maps proposed to describe the transition to chaos in phaselocking systems, gives occasion for a canonical fractal dimension D, namely that of the associated set of μ for which $f_{\mu}=\mu+g$ has irrational rotation number. We discuss how this dimension depends on the order r of the inflection points. In particular, in the smooth case we find numerically that $D(r)=D\left(r^{-1}\right)$ $=r^{-1 / 8}$.

1. Introduction

Mathematical models for periodically stimulated oscillators are usually formulated as a system of coupled differential equations [1-5]. The associated Poincaré map gives the oscillator state at time n / v as a function of the state at time $(n-1) / v$, where v is the external frequency. In appropriate limits it has often been possible to reduce this map to a one-dimensional map of the form of those we consider here [2], [6-8].

The investigation of these circle maps has been particularly useful in studying the transition to chaos [9-11]. The fractal obtained along the critical line defined by the points where chaos sets in, is described by the fractal dimension [12] obtained from iterations of a circle map [5], and this dimension seems to be universal $[9,10]$. As an example, the transition to hysteresis and chaos of the resistively shunted Josephson junction modulated by an $r f$ microwave signal [13] can be modelled by the behavior of a circle map which passes from invertibility to non-invertibility through development of an inflection point of order three [8,14]. This transition gives occasion for a complete devil's staircase structure [12], where the fractal dimension of the associated Cantor set is $D=0.87$ [10].

In this paper we study numerically maps with inflection points with orders other than three. In particular we find that the related fractal dimension varies like the $1 / 8^{\text {th }}$ power of the order. In Sect. 2 we define a set G of circle maps, and in Sect. 3 we report the results of a numerical investigation of the fractal dimension of the

