Commun. Math. Phys. 102, 573-583 (1986)

Integrability of Two Interacting N-Dimensional Rigid Bodies

A. M. Perelomov*, O. Ragnisco**, and S. Wojciechowski*** Dipartimento di Fisica, Università di Roma, P. le A. Moro 2, I-00185 Rome, Italy

Abstract. A new class of integrable Euler equations on the Lie algebra so(2n) describing two *n*-dimensional interacting rigid bodies is found. A Lax representation of equations of motion which depends on a spectral parameter is given and complete integrability is proved. The double hamiltonian structure and the Lax representation of the general flow is discussed.

1. Introduction

The Euler equations on the SO(n) Lie group, which describe the rotation of a free *n*-dimensional rigid body about a fixed point, have the following set of *n* quadratic, mutually commuting, integrals of motion

$$K_{i} = \sum_{\substack{j=1\\j\neq i}}^{n} \frac{\ell_{ij}^{2}}{\alpha_{i} - \alpha_{j}} \quad (i = 1, ..., n),$$
(1.1)

where ℓ_{ij} are the angular momentum dynamical variables and α_j , j = 1, ..., n are real parameters. Integrals of the form (1.1) have been for the first time considered by Uhlenbeck (see [1]) for the motion of a mass point on a unit sphere under the influence of a harmonic potential. But they play a special role in the motion of an *n*-dimensional rigid body, since the Manakov [2] integrable system corresponds to the hamiltonian

$$H = \frac{1}{2} \sum_{i=1}^{n'} \beta_i K_i = \frac{1}{2} \sum_{i < j} \frac{\beta_i - \beta_j}{\alpha_i - \alpha_j} \ell_{ij}^2, \qquad (1.2)$$

where β_i are real parameters and the summation is taken over all pairs i < j.

^{*} Permanent address: Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya 25, SU-117259 Moscow, USSR

^{**} Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy

^{***} Permanent address: Department of Mathematics, UMIST, P.O. Box 88, Manchester M60 1QD, England. On leave of absence from the Institute for Theoretical Physics of Warsaw University, ul. Hoza 69, PL-00-681 Warsaw, Poland