The Double-Wedge Algebra for Quantum Fields on Schwarzschild and Minkowski Spacetimes*

Bernard S. Kay

Institut für Theoretische Physik, Universität Zürich, Schönberggasse 9, CH-8001 Zürich, Switzerland

Abstract. We consider the Klein-Gordon equation $(m \ge 0)$ on the double Schwarzschild wedge of the Kruskal spacetime, and construct the Hartle-Hawking state ω_H as a thermal state relative to the Boulware quantization. We prove that, on the double wedge, ω_H is a pure state, and in the corresponding representation, the left- and right-wedge C^* algebras each have the Reeh-Schlieder property, while the corresponding von-Neumann algebras are type III_1 factors which are dual to (i.e. commutants of) each other. We discuss the extent to which these properties may generalize to non-quasi-free field theories.

Pursuing the Rindler-Fulling-Unruh analogy with the Klein-Gordon equation (m>0) in (d-dimensional) flat spacetime, we establish an explicit formula for the Minkowski vacuum on a spacelike double wedge as a thermal state relative to the Fulling quantization. We also treat the case d=2, m=0 of this formula since this is essential input for a paper with Dimock on scattering theory for the quantum Klein-Gordon equation on the Schwarzschild metric.

Contents

0.	Introduction						58
1.	Preliminaries						59
2.	The Minkowski Vacuum						63
3.	The Hartle-Hawking State	•					67
4.	Construction of (Regular) Fulling and Boulware Ground One-Particle S	ltru	icti	ares	5.		70
5	Discussion						73
			•				
	One-Particle Equivalents to the Reeh-Schlieder and Bisognan						
A1.	One-Particle Equivalents to the Reeh-Schlieder and Bisognam Theorems.	no	•W	ichi · · ·	ma:	nn	74
A1.	One-Particle Equivalents to the Reeh-Schlieder and Bisognat	no	•W	ichi · · ·	ma:	nn	74
A1. A2.	One-Particle Equivalents to the Reeh-Schlieder and Bisognam Theorems.	no• •	•W • •	ichi 	ma	nn	74 76
A1. A2. A3.	One-Particle Equivalents to the Reeh-Schlieder and Bisognam Theorems	no∙	•W • •	ich: 	ma	nn • •	74 76 77

* Research supported in part by the Schweizerischer Nationalfonds