

Self-Avoiding Walk in 5 or More Dimensions*

David Brydges¹ and Thomas Spencer²

- 1 Department of Mathematics, University of Virginia, Charlottesville, VA 22903, USA
- 2 Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012, USA

Abstract. Using an expansion based on the renormalization group philosophy we prove that for a T step weakly self-avoiding random walk in five or more dimensions the variance of the endpoint is of order T and the scaling limit is gaussian, as $T \rightarrow \infty$.

1. Introduction and Results

We consider walks $\omega(s)$ in \mathbb{Z}^d which start at the origin and consist of $|\omega| = T$ nearest neighbor steps. If each such walk ω is assigned a weight proportional to

$$P_T(\omega) \equiv \prod_{0 < s < t \le T} (1 - \lambda \delta(\omega(s) - \omega(t))), \quad 0 < \lambda \le 1,$$

we say that the walk is weakly self-avoiding or self-repelling. Here s,t denote non-negative integers and $\delta(j)=1$ if j=0 and $\delta(j)=0$ otherwise. When $\lambda=1$ only walks which strictly self-avoid are counted. Now let us define an expectation of a functional F on paths ω , $|\omega|=T$ by

$$\langle F(\cdot) \rangle_T(\lambda) \equiv \frac{\sum\limits_{|\omega| = T} F(\omega) P_T(\omega)}{\sum\limits_{|\omega| = T} P_T(\omega)}.$$

A natural quantity to study is the mean square displacement of $\omega(T)$ defined by

$$R^2(T) \equiv \langle \omega^2(T) \rangle_T(\lambda)$$
.

In the physics literature $R^2(T)$ is expressed in terms of a critical exponent ν via the relation $R^2(T) \cong C(\lambda) T^{2\nu}$ for large T. On the basis of renormalization group

Dedicated to the memory of Kurt Symanzik whose profound contributions have guided and inspired us

^{*} Work partially supported by N.S.F. Grant DMR 81-00417

^{**} A. P. Sloan Foundation Fellow. Work partially supported by N.S.F. Grant MCS 82-02115