Commun. Math. Phys. 88, 309-318 (1983)

On the Schrödinger Equation and the Eigenvalue Problem

Peter Li^{1,*} and Shing-Tung Yau²

1 Department of Mathematics, Stanford University, Stanford, CA 94305, USA

2 School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA

Abstract. If λ_k is the k^{th} eigenvalue for the Dirichlet boundary problem on a bounded domain in \mathbb{R}^n , H. Weyl's asymptotic formula asserts that $\lambda_k \sim C_n \left(\frac{k}{V(D)}\right)^{2/n}$, hence $\sum_{i=1}^k \lambda_i \sim \frac{nC_n}{n+2} k^{\frac{n+2}{n}} V(D)^{-2/n}$. We prove that for any domain and for all k, $\sum_{i=1}^k \lambda_i \ge \frac{nC_n}{n+2} k^{\frac{n+2}{n}} V(D)^{-2/n}$. A simple proof for the upper bound of the number of eigenvalues less than or equal to $-\alpha$ for the operator $\Delta - V(x)$ defined on \mathbb{R}^n $(n \ge 3)$ in terms of $\int_{\mathbb{R}^n} (V + \alpha)^{n/2} dx$ is also provided.

0. Introduction

In this paper, we study the eigenvalue problem with or without potential. We mainly concern ourself with bounded domains in \mathbb{R}^n for the case of the Laplace operator. If D is a bounded domain in \mathbb{R}^n we consider the eigenvalue problem

$$\Delta \phi = -\lambda \phi, \quad \text{on} \quad D$$

$$\phi|_{\partial D} \equiv 0. \qquad (*)$$

The discreteness of the spectrum of Δ allows one to order the eigenvalues $(0 <) \lambda_1 < \lambda_2 \leq \ldots \leq \lambda_k \leq \ldots$, monotonically.

In the case of the Schrödinger equation, we consider potentials whose negative part are in $L^{n/2}(\mathbb{R}^n)$. If V(x) is a potential function defined on \mathbb{R}^n for $n \ge 3$ and suppose $\int_{\mathbb{R}^n} V_{-}(x) dx$ is finite (see Sect. 2 for definition), it is then well known that the operator $\Delta - V(x)$ has discrete spectrum on the negative real line, i.e., the

the operator $\Delta - V(x)$ has discrete spectrum on the negative real line, i.e., the number of non-positive eigenvalues N(0) for the problem

$$(\Delta - V(x))\phi(x) = -\mu\phi(x), \quad \text{on} \quad \mathbb{R}^n \tag{(**)}$$

is finite.

and

^{*} Research partially supported by a Sloan Fellowship and NSF Grant No. 81-07911-A1