L^{2}-Exponential Lower Bounds to Solutions of the Schrödinger Equation

Richard Froese ${ }^{1, \star, \star \star}$, Ira Herbst ${ }^{1, \star, \star \star \star}$, Maria Hoffmann-Ostenhof ${ }^{2, \star \star \star \star}$, and Thomas Hoffmann-Ostenhof ${ }^{3}$
1 Institut Mittag-Leffler, Auravägen 17, S-18262 Djursholm, Sweden
2 Institut für Theoretische Physik, Universität Wien, Boltzmanngasse 5, A-1090 Wien, Austria
3 Institut für Theoretische Chemie und Strahlenchemie, Universität Wien, Währingerstrasse 17, A-1090 Wien, Austria

Abstract

We study decay properties of solutions ψ of the Schrödinger equation $(-\Delta+V) \psi=E \psi$. Typical of our results is one which shows that if $V=o\left(|x|^{-1 / 2}\right)$ at infinity or if V is a homogenous N-body potential (for example atomic or molecular), then if $E<0$ and $\alpha>\sqrt{-E}, e^{\alpha|x|} \psi \notin L^{2}\left(\mathbb{R}^{n}\right)$. We also construct examples to show that previous essential spectrum-dependent upper bounds can be far from optimal if ψ is not the ground state.

I. Introduction

In recent years there has been much interest in the asymptotic behavior of L^{2}-solutions to the Schrödinger equation

$$
\begin{equation*}
(-\Delta+V) \psi=E \psi \tag{1.1}
\end{equation*}
$$

By far, most of the effort has gone into proving upper bounds to solutions of (1.1) with E outside the essential spectrum of $-\Delta+V$. Recent work on this subject can be found in $[1-3,12,19]$. The results of Agmon [1, 2] for the N-body problem are the most general. Agmon shows that solutions ψ of (1.1) satisfy (under certain conditions)

$$
\begin{equation*}
|\psi(x)| \leqq C_{\varepsilon} \exp \left(-(1-\varepsilon) \varrho_{E}(x)\right) \tag{1.2}
\end{equation*}
$$

for $\varepsilon>0$, where $\varrho_{E}(x)$ is (in principle) an explicitly computable function. This generalizes the earlier result in [25] which states that for N-body potentials

$$
\begin{equation*}
|\psi(x)| \leqq C_{\varepsilon} \exp (-(1-\varepsilon) \sqrt{\Sigma-E}|x|) \tag{1.3}
\end{equation*}
$$

[^0]
[^0]: * Permanent address: Department of Mathematics, University of Virginia, Charlottesville, VA 22903, USA
 ** Research in partial fulfillment of the requirements for a Ph. D. degree at the University of Virginia
 *** Partially supported by NSF grant MCS-81-01665
 **** Supported by „Fonds zur Förderung der wissenschaftlichen Forschung in Österreich", Projekt Nr. 4240

