L²-Exponential Lower Bounds to Solutions of the Schrödinger Equation

Richard Froese^{1, $\star, \star \star$}, Ira Herbst^{1, $\star, \star \star \star$}, Maria Hoffmann-Ostenhof^{2, $\star \star \star \star$}, and Thomas Hoffmann-Ostenhof³

1 Institut Mittag-Leffler, Auravägen 17, S-18262 Djursholm, Sweden

2 Institut für Theoretische Physik, Universität Wien, Boltzmanngasse 5, A-1090 Wien, Austria

3 Institut für Theoretische Chemie und Strahlenchemie, Universität Wien, Währingerstrasse 17, A-1090 Wien, Austria

Abstract. We study decay properties of solutions ψ of the Schrödinger equation $(-\Delta + V)\psi = E\psi$. Typical of our results is one which shows that if $V = o(|x|^{-1/2})$ at infinity or if V is a homogenous N-body potential (for example atomic or molecular), then if E < 0 and $\alpha > \sqrt{-E}$, $e^{\alpha|x|}\psi \notin L^2(\mathbb{R}^n)$. We also construct examples to show that previous essential spectrum-dependent upper bounds can be far from optimal if ψ is not the ground state.

I. Introduction

In recent years there has been much interest in the asymptotic behavior of L^2 -solutions to the Schrödinger equation

$$(-\varDelta + V)\psi = E\psi. \tag{1.1}$$

By far, most of the effort has gone into proving upper bounds to solutions of (1.1) with *E* outside the essential spectrum of $-\Delta + V$. Recent work on this subject can be found in [1–3, 12, 19]. The results of Agmon [1, 2] for the *N*-body problem are the most general. Agmon shows that solutions ψ of (1.1) satisfy (under certain conditions)

$$|\psi(x)| \le C_{\varepsilon} \exp(-(1-\varepsilon)\varrho_{E}(x)) \tag{1.2}$$

for $\varepsilon > 0$, where $\varrho_E(x)$ is (in principle) an explicitly computable function. This generalizes the earlier result in [25] which states that for N-body potentials

$$|\psi(x)| \le C_{\varepsilon} \exp(-(1-\varepsilon))/\Sigma - E|x|), \qquad (1.3)$$

^{*} Permanent address: Department of Mathematics, University of Virginia, Charlottesville, VA 22903, USA

 ^{**} Research in partial fulfillment of the requirements for a Ph. D. degree at the University of Virginia
*** Partially supported by NSF grant MCS-81-01665

^{****} Supported by "Fonds zur Förderung der wissenschaftlichen Forschung in Österreich", Projekt Nr. 4240