Commun. Math. Phys. 87, 229-252 (1982)

Infinite Differentiability for One-Dimensional Spin System with Long Range Random Interaction

M. Cassandro¹, E. Olivieri², and B. Tirozzi²

1 Istituto di Física, Università di Roma, C.N.R. (G.N.S.M.), I-00185 Roma, Italy

2 Istituto di Matematica, Università di Roma, C.N.R. (G.N.F.M.), I-00185 Roma, Italy

Abstract. We consider one-dimensional spin systems with Hamiltonian:

$$H(\sigma_{\Lambda}) = -\sum_{t,t'\in\Lambda} \frac{\varepsilon_{tt'}}{|t-t'|^{\alpha}} \sigma_t \sigma_{t'} - h \sum_{t\in\Lambda} \sigma_t,$$

where $\varepsilon_{tt'}$ are independent random variables and, using decimation and the cluster expansion, we show that, when $\alpha > 3/2$ and $\mathbb{E}(\varepsilon_{tt'}) = 0$, for any magnetic field *h* and inverse temperature β , the correlation functions and the free energy are C^{∞} both in *h* and β .

Moreover we discuss an example, obtained by a particular choice of the probability distribution of the ε_{tt} 's, where the quenched magnetization is C^{∞} but fails to be analytic in *h* for suitable *h* and β .

1. Introduction and Results

We consider a one-dimensional system with random interaction enclosed in a box Λ whose energy, for a given spin configuration σ_{Λ} in Λ , is:

$$H(\sigma_{A}) = -\sum_{\substack{t_{1}, t_{2} \in A \\ t_{1} \neq t_{2}}} \frac{\varepsilon_{t_{1}t_{2}}}{|t_{1} - t_{2}|^{\alpha}} \sigma_{t_{1}} \sigma_{t_{2}} - h \sum_{t \in A} \sigma_{t}, \qquad (1.1)$$

where $\sigma_t \in \{1, -1\}$, $3/2 < \alpha < 2^1$ and $\varepsilon_{t_1 t_2}$ are independent random variables defined in the probability space $(\Omega, \Sigma, \mathbb{P})$.

In the sequel we will consider the following conditions on the $\varepsilon_{t_1t_2}$:

- C1) $\mathbb{E}(\varepsilon_{t_1t_2}) = 0$,
- C2) $\exists \overline{\varepsilon} : |\varepsilon_{t_1t_2}| < \overline{\varepsilon} \quad \forall t_1, t_2 \in \mathbb{Z},$

C3) $\mathbb{E}(\varepsilon_{t_1t_2}^2) \ge a$ for some a > 0,

C4) the probability distribution of $\varepsilon_{t_1t_2}$ depends only on $|t_1 - t_2|$ (translation invariance).

¹ For $\alpha > 2$ the stochastic character of the interaction is irrelevant (see [1] and Remark 3 of Sect. 4)