Commun. Math. Phys. 87, 81-87 (1982)

Weak Convergence of a Random Walk in a Random Environment

Gregory F. Lawler

Department of Mathematics, Duke University, Durham, NC 27706, USA

Abstract. Let $\pi_i(x)$, i = 1, ..., d, $x \in Z^d$, satisfy $\pi_i(x) \ge \alpha > 0$, and $\pi_1(x) + ... + \pi_d(x) = 1$. Define a Markov chain on Z^d by specifying that a particle at x takes a jump of + 1 in the *i*th direction with probability $\frac{1}{2}\pi_i(x)$ and a jump of -1 in the *i*th direction with probability $\frac{1}{2}\pi_i(x)$ are chosen from a stationary, ergodic distribution, then for almost all π the corresponding chain converges weakly to a Brownian motion.

1. Introduction

Let Z^d be the integer lattice and let e_i , i = 1, ..., d, denote the unit vector whose i^{th} component is equal to 1. Let

$$S = \{ (p_1, \dots, p_d) \in \mathbb{R}^d : p_i \ge 0, p_1 + \dots + p_d = 1 \},\$$

and suppose we have a function $\pi: \mathbb{Z}^d \to S$. Then a Markov chain $X_{\pi}(j)$ on \mathbb{Z}^d is generated with transition probability

$$P\{X_{\pi}(j+1) = x \pm e_i | X_{\pi}(j) = x\} = \frac{1}{2}\pi_i(x), \tag{1.1}$$

and generator

$$L_{\pi}g(x) = \sum_{i=1}^{d} \frac{1}{2}\pi_i(x) \{g(x+e_i) + g(x-e_i)\}.$$

If the function π is chosen from some probability distribution on S, this gives an example of a random walk in a random environment.

For any π , we can consider the limiting distribution of the process X_{π} satisfying $X_{\pi}(0) = 0$ and (1.1). Let $\alpha > 0$ and set

$$S^{\alpha} = \{(p_1, \ldots, p_d) \in S : p_i \geq \alpha\},\$$

and let C^{α} be the set of functions $\pi: \mathbb{Z}^d \to S^{\alpha}$. The main result of this paper is:

Theorem 1. Let μ be a stationary ergodic measure on C^{α} . Then there exists $b \in S^{\alpha}$ such