Weak Convergence of a Random Walk in a Random Environment

Gregory F. Lawler
Department of Mathematics, Duke University, Durham, NC 27706, USA

Abstract

Let $\pi_{i}(x), \quad i=1, \ldots, d, \quad x \in Z^{d}$, satisfy $\pi_{i}(x) \geqq \alpha>0$, and $\pi_{1}(x)+\ldots+\pi_{d}(x)=1$. Define a Markov chain on Z^{d} by specifying that a particle at x takes a jump of +1 in the $i^{\text {th }}$ direction with probability $\frac{1}{2} \pi_{i}(x)$ and a jump of -1 in the $i^{\text {th }}$ direction with probability $\frac{1}{2} \pi_{i}(x)$. If the $\pi_{i}(x)$ are chosen from a stationary, ergodic distribution, then for almost all π the corresponding chain converges weakly to a Brownian motion.

1. Introduction

Let Z^{d} be the integer lattice and let $e_{i}, i=1, \ldots, d$, denote the unit vector whose $i^{\text {th }}$ component is equal to 1 . Let

$$
S=\left\{\left(p_{1}, \ldots, p_{d}\right) \in \mathbb{R}^{d}: p_{i} \geqq 0, p_{1}+\ldots+p_{d}=1\right\}
$$

and suppose we have a function $\pi: Z^{d} \rightarrow S$. Then a Markov chain $X_{\pi}(j)$ on Z^{d} is generated with transition probability

$$
\begin{equation*}
P\left\{X_{\pi}(j+1)=x \pm e_{i} \mid X_{\pi}(j)=x\right\}=\frac{1}{2} \pi_{i}(x) \tag{1.1}
\end{equation*}
$$

and generator

$$
L_{\pi} g(x)=\sum_{i=1}^{d} \frac{1}{2} \pi_{i}(x)\left\{g\left(x+e_{i}\right)+g\left(x-e_{i}\right)\right\}
$$

If the function π is chosen from some probability distribution on S, this gives an example of a random walk in a random environment.

For any π, we can consider the limiting distribution of the process X_{π} satisfying $X_{\pi}(0)=0$ and (1.1). Let $\alpha>0$ and set

$$
S^{\alpha}=\left\{\left(p_{1}, \ldots, p_{d}\right) \in S: p_{i} \geqq \alpha\right\}
$$

and let C^{α} be the set of functions $\pi: Z^{d} \rightarrow S^{\alpha}$. The main result of this paper is:
Theorem 1. Let μ be a stationary ergodic measure on C^{α}. Then there exists $b \in S^{\alpha}$ such

