Multi-Instantons Localized at the Origin

Yves Brihaye
Physique Théorique, University of Mons, B-7000 Mons, Belgium

Abstract

We obtain a family of self-dual Yang-Mills fields in an $\mathrm{SU}(2)$ gauge theory. Some of them describe pseudoparticles with arbitrary topological numbers and with action densities concentrated around the origin.

1. Introduction

By now, much is known about self-duality equations (SDE) for $\mathrm{SU}(2)$ gauge theories. In principle, Atiyah et al. [1] have solved the problem completely, but only a restricted number of solutions are explicitly known and understood as solitons by knowledge of their action or energy density. The most popular one is the k-instanton discovered by' 'tHooft [2]. It corresponds essentially to a superposition of k widely separated instantons [3].

Recently, research for multi-monopoles has led to new (time independent) solutions [4]; these have a cylindric symmetry, finite energy and their energy density is maximal on a circle in such a way that most of the energy is concentrated in a torus-like region of space.

In this paper, we exhibit a class of time dependent solutions with finite action and an action density maximal on a circle in Euclidean space-time. To obtain such solutions, we require a particular transformation law of the fields under the subgroup $\mathrm{SO}(2) \times \mathrm{SO}(2)$ of rotations in the x_{1}, x_{2} plane and in the x_{0}, x_{3} plane. The solutions belong to a large class obtained in [8] with different motivations. In Sect. 2 of the paper, we rapidly explain the ansatz and the construction; then we study in Sect. 3 the physically relevant solutions. Some conclusions are drawn in Sect. 4.

Let us first write the equations to be satisfied ; in order to study the SDE

$$
\begin{equation*}
F_{\mu \nu}=\tilde{F}_{\mu \nu} \equiv \frac{1}{2} \varepsilon_{\mu \nu \varrho \sigma} F^{\varrho \sigma} \tag{1.1}
\end{equation*}
$$

for the gauge field $F_{\mu \nu}$ defined as usual in terms of a gauge potential A_{μ} by $F_{\mu \nu}$ $=\partial_{\mu} A_{v}-\partial_{v} A_{\mu}+i\left[A_{\mu}, A_{v}\right]$, we have used the Yang formalism. It works with the light-like coordinates

$$
\begin{equation*}
Y=\frac{1}{\sqrt{2}}\left(x^{0}-i x^{3}\right), \quad Z=\frac{1}{\sqrt{2}}\left(x^{2}+i x^{1}\right), \quad \bar{Y}=Y^{*}, \quad \bar{Z}=Z^{*} \tag{1.2}
\end{equation*}
$$

