Commun. Math. Phys. 86, 149–160 (1982)

Energy Dependence of the Scattering Operator II

E. B. Davies

Department of Mathematics, King's College, Strand, London WC2R 2LS, England

Abstract. We study the energy dependence of the scattering operator for a twobody model of electron scattering from a neutral molecule. We show that the methods of the first paper can be applied even though the dipole moment of the molecule is non-zero, and prove continuity of the scattering operator S(E) as Evaries, in a very strong sense.

1. Introduction

We study the elastic scattering of an electron from a neutral molecule in the two-body approximation. That is, we study the scattering between $H = -\Delta$ and K = H + V on $\mathscr{H} = L^2(\mathbb{R}^3)$, where

$$V(x) = \int_{\mathbb{R}^3} \frac{1}{|x-y|} \mu(dy).$$

We assume that the charge distribution μ is a signed measure of finite total mass and zero net charge, that is

$$\int \mu(dy) = 0.$$

We also assume that the dipole moment a of μ , given by

$$a = \int y \mu(dy)$$

is non-zero, so that the potential V has the asymptotic form

$$V(x) = \frac{a \cdot x}{r^3} + O(r^{-3})$$

at infinity, where r = |x|. To ensure that *a* is finite we assume μ has support within $\{x:|x| \leq R\}$ for some $R < \infty$. Our methods could, however, easily cope with a charge distribution with exponential tails at infinity.

The potential V is fairly well-behaved, and there are a variety of techniques [1, 7] which ensure that the wave operators between H and K exist and are complete. We are interested in studying the energy dependence of the scattering operator