

© Springer-Verlag 1982

Proof of Confinement of Static Quarks in 3-Dimensional U(1) Lattice Gauge Theory for all Values of the Coupling Constant*

Markus Göpfert and Gerhard Mack

II. Institut für Theoretische Physik der Universität Hamburg, D-2000 Hamburg 50, Federal Republic of Germany

Abstract. We study the 3-dimensional pure U(1) lattice gauge theory with Villain action which is related to the 3-dimensional \mathbb{Z} -ferromagnet by an exact duality transformation (and also to a Coulomb system). We show that its string tension α is nonzero for all values of the coupling constant g^2 , and obeys a bound $\alpha \ge \operatorname{const} \cdot m_D \beta^{-1}$ for small ag^2 , with $\beta = 4\pi^2/g^2$ and $m_D^2 = (2\beta/a^3)e^{-\beta \nu c_b(0)/2}$ (a =lattice spacing). A continuum limit $a \to 0$, m_D fixed, exists and represents a scalar free field theory of mass m_D . The string tension αm_D^{-2} in physical units tends to ∞ in this limit. Characteristic differences in the behaviour of the model for large and small coupling constant ag^2 are found. Renormalization group aspects are discussed.

1. Introduction and Discussion of Results

In this paper we will study the **Z**-ferromagnet on a 3-dimensional cubic lattice $\Lambda \subseteq (a\mathbb{Z})^3$ of lattice spacing a. The spin variables n(x) of the model are attached to the sites x of the lattice. They take values which are integer multiples of 2π . The partition function is

$$Z_{\Lambda} = \sum_{n \in (2\pi\mathbb{Z})^{\Lambda}} \exp L(n), \quad \text{with} \quad L(n) = -\frac{1}{2\beta} \int_{x} \left[\nabla_{\mu} n(x) \right]^{2}. \tag{1.1}$$

We use the notations (e_{μ} =lattice vector of length a in μ -direction)

$$\int_{x} = a^{3} \sum_{x \in A}; \qquad V_{\pm \mu} n(x) = a^{-1} [n(x \pm e_{\mu}) - n(x)]. \tag{1.2}$$

 β has dimension of a length, whereas n is dimensionless. Formula (1.1) must be supplemented by boundary conditions. We choose to immerse the system into an infinitely extended heat bath which is described by a massless free field theory, see Eqs. (2.3) of Sect. 2. [Formally, the partition function for the combined system is also given by Eq. (1.1), but the variables n(x) are integrated over the reals outside

^{*} Work supported in part by Deutsche Forschungsgemeinschaft