Proof of Confinement of Static Quarks in 3-Dimensional $\boldsymbol{U}(1)$ Lattice Gauge Theory for all Values of the Coupling Constant ${ }^{\star}$

Markus Göpfert and Gerhard Mack
II. Institut für Theoretische Physik der Universität Hamburg, D-2000 Hamburg 50, Federal Republic of Germany

Abstract

We study the 3-dimensional pure $U(1)$ lattice gauge theory with Villain action which is related to the 3-dimensional \mathbb{Z}-ferromagnet by an exact duality transformation (and also to a Coulomb system). We show that its string tension α is nonzero for all values of the coupling constant g^{2}, and obeys a bound $\alpha \geqq$ const $\cdot m_{D} \beta^{-1} \quad$ for small $a g^{2}$, with $\beta=4 \pi^{2} / g^{2}$ and $m_{D}^{2}=\left(2 \beta / a^{3}\right) e^{-\beta_{v} c_{b}(0) / 2}(a=$ lattice spacing $)$. A continuum limit $a \rightarrow 0, m_{D}$ fixed, exists and represents a scalar free field theory of mass m_{D}. The string tension αm_{D}^{-2} in physical units tends to ∞ in this limit. Characteristic differences in the behaviour of the model for large and small coupling constant $a g^{2}$ are found. Renormalization group aspects are discussed.

1. Introduction and Discussion of Results

In this paper we will study the \mathbb{Z}-ferromagnet on a 3 -dimensional cubic lattice $\Lambda \subseteq(a \mathbb{Z})^{3}$ of lattice spacing a. The spin variables $n(x)$ of the model are attached to the sites x of the lattice. They take values which are integer multiples of 2π. The partition function is

$$
\begin{equation*}
Z_{A}=\sum_{n \in(2 \pi \mathbb{Z})^{4}} \operatorname{expL}(n), \quad \text { with } \quad \mathrm{L}(n)=-\frac{1}{2 \beta} \int_{x}\left[\nabla_{\mu} n(x)\right]^{2} . \tag{1.1}
\end{equation*}
$$

We use the notations ($e_{\mu}=$ lattice vector of length a in μ-direction)

$$
\begin{equation*}
\int_{x}=a^{3} \sum_{x \in A} ; \quad \nabla_{ \pm \mu} n(x)=a^{-1}\left[n\left(x \pm e_{\mu}\right)-n(x)\right] . \tag{1.2}
\end{equation*}
$$

β has dimension of a length, whereas n is dimensionless. Formula (1.1) must be supplemented by boundary conditions. We choose to immerse the system into an infinitely extended heat bath which is described by a massless free field theory, see Eqs. (2.3) of Sect. 2. [Formally, the partition function for the combined system is also given by Eq. (1.1), but the variables $n(x)$ are integrated over the reals outside

[^0]
[^0]: * Work supported in part by Deutsche Forschungsgemeinschaft

