Pure States as a Dual Object for C*-Algebras

Frederic W. Shultz* Wellesley College, Wellesley, MA 02181, USA

Abstract. We consider the set of pure states of a C^* -algebra as a uniform space equipped with transition probabilities and orientation, and show that the pure states with this structure determine the C^* -algebra up to *-isomorphism.

Introduction

For commutative unital C^* -algebras, it is well known that the set of pure states (as a topological space) determines the algebra. In fact, any two such algebras are isomorphic to C(X) and C(Y) for compact Hausdorff spaces X and Y. The pure states of C(X) are just evaluation at each x in X, and every homeomorphism of Y onto X is induced by a *-isomorphism of C(X) onto C(Y). The Stone–Weierstrass theorem is a special case of this.

For general C^* -algebras it is clear that this result fails, e.g. not every homeomorphism of the pure states P(B) onto P(A) is induced by a *-isomorphism; P(A)(as a topological space) does not determine A. The purpose of this paper is to show that P(A) does determine A if given a suitable structure.

The roots of our investigation go back to the work of Kadison [12-14] and Wigner [19]. Kadison studied the representation of a C^* -algebra as continuous functions on P(A) (or $P(A)^-$). He showed [13] that a homeomorphism of $P(B)^-$ onto $P(A)^-$ which carries A onto B is induced by a Jordan isomorphism. Wigner focused on transition probabilities between pure states. He showed that a bijection of the pure normal states of $B(H_2)$ onto those of $B(H_1)$ which preserves transition probabilities is induced by a Jordan isomorphism (in this case, a *-isomorphism or *-anti-isomorphism) of $B(H_1)$ onto $B(H_2)$. There have also been investigations of Stone–Weierstrass theorems for C^* -algebras, e.g. Kaplansky [16], Glimm [11], Sakai [17]; Akemann [1, 2], Giles and Kummer [9], and Effros [8].

The recent work from which this paper springs is joint work with Alfsen and Hanche–Olsen [5], in which the notion of orientation of a state space was introduced. It was shown there that an affine homeomorphism of state spaces is induced by a *-isomorphism iff the map preserves orientation.

Our work combines the structures of topology (or uniformity), transition

^{*} Partially supported by NSF grant MCS78-02455