The Spectral Class of the Quantum-Mechanical Harmonic Oscillator

H. P. McKean and E. Trubowitz*

Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA

Abstract. The purpose of this paper is to study the so-called *spectral class* **Q** of anharmonic oscillators $Q = -D^2 + q$ having the same spectrum $\lambda_n = 2n$ $(n \ge 0)$ as the harmonic oscillator $Q^0 = -D^2 + x^2 - 1$. The norming constants $t_n = \lim_{x \to \infty} lg[(-1)^n e_n(x)/e_n(-x)]$ of the eigenfunctions of Q form a complete set of coordinates in **Q** in terms of which the potential may be expressed as $q = x^2 - 1 - 2D^2 lg \theta$ with

$$\theta = \det \left[\delta_{ij} + (e^{t_i} - 1) \int\limits_x^\infty e_i^0 e_j^0 : 0 \leq i, j, < \infty \right],$$

 e_n^0 being the *n*th eigenfunction Q^0 . The spectrum and norming constants are canonically conjugate relative to the bracket $[F, G] = \int \nabla F D \nabla G dx$, to wit: $[\lambda_i, \lambda_j] = 0, [t_i, 2\lambda_j] = 1$ or 0 according to whether i = j or not, and $[t_i, t_j] = 0$. This prompts an investigation of the symplectic geometry of **Q**. The function θ is related to the theta function of a singular algebraic curve. Numerical results are also presented.

1. Introduction

The spectrum of the quantum-mechanical harmonic oscillator¹ $Q^0 = -D^2 + x^2 - 1$ is 0, 2, 4, 6, etc. The corresponding unit eigenfunctions are the Hermite functions:

$$e_n^0(x) = (\sqrt{\pi}2^n n!)^{-1/2} e^{x^2/2} D^n e^{-x^2} \quad (n \ge 0).$$

Let Δq belong to the class $\mathbf{S}(\mathbf{R})$ of real infinitely differentiable functions vanishing rapidly at $\pm \infty^2$. The anharmonic oscillator $Q = -D^2 + q$ with potential $q = x^2 - 1 + \Delta q$ has a discrete spectrum of simple eigenvalues $\lambda_n = \lambda_n[q]$, increasing to $+\infty$ with *n*, and corresponding unit eigenfunctions e_n ($n \ge 0$) of class S. The

^{*} Sloan Foundation Fellow.

¹ D signifies differentiation with regard to x.

² $x^i D^j \Delta q = o(1)$ for $x \to \pm \infty$ and every $i, j \ge 0$.