© Springer-Verlag 1981

Borel-Summability of the High Temperature Expansion for Classical Continuous Systems

Wolfgang Wagner

Institut für Theoretische Physik der Universität Zürich, Schönberggasse 9, CH-8001 Zürich, Switzerland

Abstract. It is shown that for classical gases with stable, bounded and absolutely integrable pair interactions, the Taylor expansions in β of the correlation functions and the pressure are Borel-summable at $\beta = 0$.

1. Introduction

The question of analyticity in β for classical continuous systems was considered some years ago by Lebowitz and Penrose [1]. Among other results they showed that for hard core potentials pressure and correlation functions are analytic at $\beta = 0$. In this paper we treat the case of bounded potentials, where analyticity is not to be expected, as the expansion is around the ideal gas and the negative of a stable potential is unstable, which causes divergence of the pressure for negative β in the finite volume.

2. Infinite Volume Correlation Functions

We assume the interaction potential ϕ to satisfy stability,

$$\sum_{\substack{i,j=1\\i< j}}^{m} \Phi(x_i - x_j) \ge -mB \qquad \text{for some constant } B \tag{1}$$

and

$$\|\Phi\|_{\infty} < \infty, \tag{2}$$

$$\|\Phi\|_1 < \infty. \tag{3}$$

Eqs. (2) and (3) imply regularity ($\lceil 2 \rceil$, ch. 4.1):

$$\int |e^{-\beta\Phi(x)} - 1| dx = C(\beta) < \infty \quad \text{for } \beta \in \mathbb{C}.$$
 (4)

We shall use the representation of the correlation functions given by Ruelle ([2], ch. 4.2.):

On the Banach-spaces E_{ξ} , $\xi > 0$ of sequences of complex functions $\varphi =$