Commun. Math. Phys. 80, 153-179 (1981)

A General Lee–Yang Theorem for One-Component and Multicomponent Ferromagnets

Elliott H. Lieb^{1*} and Alan D. Sokal^{2**}

1 Departments of Mathematics and Physics, Princeton University, Princeton, NJ 08544, USA

2 Department of Physics, Princeton University, Princeton, NJ 08544, USA

Abstract. We show that any measure on \mathbb{R}^n possessing the Lee-Yang property retains that property when multiplied by a ferromagnetic pair interaction. Newman's Lee-Yang theorem for one-component ferromagnets with general single-spin measure is an immediate consequence. We also prove an analogous result for two-component ferromagnets. For N-component ferromagnets $(N \ge 3)$, we prove a Lee-Yang theorem when the interaction is sufficiently anisotropic.

1. Introduction

The Lee-Yang theorem on the zeros of the partition function is an important tool in the rigorous study of phase transitions in lattice spin systems [1]. In addition, it has applications to the proof of existence of the infinite-volume limit [2] and of a mass gap [3, 4], and to the proof of correlation inequalities [5, 6] and inequalities for critical exponents [4, 7, 8].

In this paper we shall give a new proof of a generalized Lee-Yang Theorem. Our methods lead to an essentially complete result for one-component and two-component (classical) ferromagnets with quite general single-spin measures. We have also some promising partial results for N-component ferromagnets $(N \ge 3)$. We end the paper with some conjectures.

Consider, for purposes of orientation, the model of one-component "spins" ϕ_i defined by the partition function

$$Z = \int \exp\left[\sum_{i,j=1}^{n} J_{ij}\varphi_{i}\varphi_{j} + \sum_{i=1}^{n} h_{i}\varphi_{i}\right]\prod_{i=1}^{n} dv_{i}(\varphi_{i}).$$
(1.1)

Here the dv_i are suitable probability measures on the real line; the pair interaction coefficients J_{ij} are nonnegative ("ferromagnetic"); and the magnetic fields h_i are allowed to take arbitrary complex values. The Lee–Yang theorem then states

^{*} Research supported in part by NSF grant PHY 78-25390 A01

^{**} Research supported in part by NSF grant PHY 78-23952