Commun. Math. Phys. 78, 391-408 (1981)

Absence of Singular Continuous Spectrum for Certain Self-Adjoint Operators

E. Mourre

Centre de Physique Théorique, CNRS Marseille, F-13288 Marseille Cedex 2, France

Abstract. We give a sufficient condition for a self-adjoint operator to have the following properties in a neighborhood of a point E of its spectrum:

- a) its point spectrum is finite;
- b) its singular continuous spectrum is empty;
- c) its resolvent satisfies a class of a priori estimates.

Notations, Definitions, and Main Theorem

Let *H* be a self-adjoint operator on a Hilbert space \mathcal{H} . We will denote by $\mathcal{H}_n(n \in \mathbb{Z})$ the Hilbert space constructed from the spectral representation for *H* with the scalar product:

$$(\Phi | \Psi)_n = \int (\lambda^2 + 1)^{n/2} (\Phi | P_H(d\lambda) \Psi).$$

For functions $P \in L^{\infty}(\mathbf{R})$, P_H will denote the associated operator given by the usual functional calculus.

 $P_H(E, \delta)$ will denote the spectral projection for H onto the interval $(E - \delta, E + \delta)$. P_H^p and P_H^c will denote the spectral projectors respectively onto the point spectrum and the continuous spectrum of H; $\sigma_c(H) = \mathbf{R}/\{E \in \mathbf{R} | E \text{ is an eigenvalue} \text{ of } H\}$.

If A is a self-adjoint operator and $D(A) \cap D(H)$ is dense in \mathcal{H} , i[H, A] will denote the symmetric form on $D(A) \cap D(H)$ given by

$$(\Phi|i[H,A]\Psi) = i\{(H\Phi|A\Psi) - (A\Phi|H\Psi)\}$$

for $\Psi, \Phi \in D(A) \cap D(H)$. If this form is bounded below and closeable, $i[H, A]^0$ will denote the self-adjoint operator associated to the closure [1].

1. Definition. Let H be a self-adjoint operator on a Hilbert space with domain D(H); a self-adjoint operator A is a conjugate operator for H at a point $E \in \mathbf{R}$ if and only if the following conditions hold:

- (a) $D(A) \cap D(H)$ is a core for H.
- (b) $e^{+iA\alpha}$ leaves the domain of H invariant and for each $\Psi \in D(H)$

$$\sup_{|\alpha|<1} \|He^{+iA\alpha}\Psi\| < \infty.$$

0010-3616/81/0078/0391/\$03.60