Commun. Math. Phys. 78, 247-280 (1980)

Markov Partitions for Dispersed Billiards*

L. A. Bunimovich and Ya. G. Sinai

L. D. Landau Institute for Theoretical Physics, Academy of Sciences, SU-117334 Moscow, USSR

Abstract. Markov Partitions for some classes of billiards in two-dimensional domains on \mathbb{R}^2 or two-dimensional torus are constructed. Using these partitions we represent the microcanonical distribution of the corresponding dynamical system in the form of a limit Gibbs state and investigate the character of its approximations by finite Markov chains.

1. Dispersed Billiards and Formulation of Main Results

Let Q be a two-dimensional open bounded connected domain on \mathbb{R}^2 or the twodimensional torus with Euclidean metric. We suppose that the boundary ∂Q consists of a finite number of C^3 -smooth non-selfintersecting curves Γ_i , $i=1,2,\ldots,p$, which may be either closed or have common end-points.

Billiard in Q is the dynamical system which corresponds to the motion of a material point inside Q by inertia with elastic reflections at the boundary.

We consider the framing of each Γ_i by unit normal vectors n(q), $q \in \Gamma_i$, directed inside Q. As a result the curvature of each Γ_i takes a definite sign. Dispersed billiards are billiards for which all Γ_i have a strictly positive curvature (see [1]).

Let *M* be the unit tangent bundle over *Q*, π is the natural projection of *M* onto *Q*. Preimage $\pi^{-1}(q) = S^1(q)$, $q \in Q$ consists of unit vectors which are tangent to *Q* at $q \in Q$. *M* is the three-dimensional open manifold with the boundary $\partial M = \bigcup_{i=1}^{p} \pi^{-1}(\Gamma_i) = \bigcup_{i=1}^{p} \partial M_i$. On every ∂M_i one can introduce natural coordinates (r, φ) where *r* is the parameter of length on every Γ_i and φ is the angle between *x* and n(q), $q = \pi(x)$. Let

$$\begin{split} M_{1} &= \{ x \in \partial M : (x, n(q)) \ge 0, q = \pi(x) \}, \qquad M_{1}^{(i)} = M_{1} \cap \partial M_{i} \\ S_{0} &= \{ x \in \partial M : (x, n(q)) = 0, q = \pi(x) \}, \\ M_{2} &= \bigcup_{i \neq j} \pi^{-1}(\Gamma_{i} \cap \Gamma_{j}), \qquad M_{s} = S_{0} \cup M_{2} \,. \end{split}$$

^{*} Dedicated to the memory of Rufus Bowen