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Abstract. We consider the motion of a particle in a weak mean zero random

force field F, which depends on the position, x(t), and the velocity, v(t) = x(t).

The equation of motion is X(t) = eF(x(t), v(t), w), where x(-) and v(-) take values

in RY d >3, and w ranges over some probability space. We show, under

suitable mixing and moment conditions on F, that as ¢ — 0, v°(t) = v(t/e?)

converges weakly to a diffusion Markov process u(t), and &*x(t) converges
t

weakly to [v(s)ds + x, where x = lim &2x%(0).
0

1. Introduction

For simplicity we do not discuss the general situation in this section, but restrict
ourselves to force fields which depend on position only.

Let F(x),xeR? be a random vector field, a random force field, which
is stationary and has mean zero. Let x(t) be the coordinate of a particle of unit
mass moving through this force field. The equation of motion is

X = F(x). (1.1)

with given initial position and velocity. Suppose that the force is weak and weakly
correlated for points that are far apart. Then one expects that after a long time
the velocity x will behave like a diffusion Markov process and the position x
like the integral of this diffusion process.

To be more specific, suppose that the root mean square of the force field F
is proportional to ¢ so that we may replace (1.1) by

% = eF(x) (1.2)

in which F(x) is of order one. Rescaling of time ¢ into t/e? and putting X(t/e?) =
v¥(t), x(t/%) = x*(t) leads from (1.1) to the system.

) 1
dt _szv(t)
do@) 1,
it —CF(X (t)) (1.3)
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