Poisson Processes on Groups and Feynman Path Integrals

Ph. Combe¹, R. Høegh-Krohn⁴, R. Rodriguez¹, M. Sirugue², and M. Sirugue-Collin³

¹ Faculté des Sciences de Luminy and Centre de Physique Théorique

² Centre de Physique Théorique

³ Université de Provence and Centre de Physique Théorique, CNRS, Marseille, France, and

⁴ Matematisk Institutt, Universitet i Oslo, Oslo

Abstract. We give an expression for the perturbed evolution of a free evolution by gentle, possibly velocity dependent, potential, in terms of the expectation with respect to a Poisson process on a group. Various applications are given in particular to usual quantum mechanics but also to Fermi and spin systems.

Introduction

Since the proposal of Feynman [1] of a quantization procedure by means of path integrals, a great deal of effort has been devoted to make precise the definition of such an integral (see e.g., [2, 3] for references). An important step has been to realize that in some cases this path integral can be interpreted as the expectation with respect to a stochastic process [4]. One of the most natural stochastic processes which has been considered first is the Gaussian process. Another one is the Poisson process [5, 6]. In this paper, we shall consider the connection between Poisson processes on groups and the usual Weyl quantization procedure. More specifically, let H_0 be the free hamiltonian of a single particle and V a multiplicative potential which is the Fourier transform of a bounded measure v. In the "p" representation H_0 is just a multiplication operator by $h_0(p)=p^2$, then for any square integrable, continuous function ψ one has

$$\{e^{-iT(H_0+V)}\psi\}(p) = E_{p(T)=0}^T \left\{ e^{-i\int_0^T h_0(p-p(\tau))d\tau} \psi(p-p(0)) \right\},$$

where $E_{p(T)=0}^{T}$ denotes the expectation value with respect to a Poisson process naturally associated to v, Proposition (3.7).

In fact this result is a special case of a more general result. Let G be a topological group which acts on a topological space \mathfrak{X} , and let μ be a quasi-invariant measure on \mathfrak{X} with respect to the action of G. Under these assumptions the action of G on \mathfrak{X} induces *-automorphisms of $L_{\infty}(\mathfrak{X}, \mu)$ which are unitarily implemented by a unitary projective representation U of G. Let \mathfrak{M} be the cross product of $L_{\infty}(\mathfrak{X}, \mu)$ by the action of G. Then it is possible to write a formula of the