# The Critical Probability of Bond Percolation on the Square Lattice Equals 1/2^ 

Harry Kesten<br>Cornell University, Ithaca, NY 14853, USA


#### Abstract

We prove the statement in the title of the paper.


## 1. Introduction

Broadbent and Hammersley [2], introduced the following percolation problem. Let $\mathscr{L}$ be the graph in the plane whose vertices are the integral vectors (i.e., elements of $\mathbb{Z}^{2}$ ) and whose edges or bonds are the segments connecting two adjacent vertices (we call two vertices $v^{\prime}$ and $v^{\prime \prime}$ of $\mathscr{L}$ adjacent if the distance between them equals 1 ). Let each bond of $\mathscr{L}$ be open or passable with probability $p$, and closed or blocked with probability $q=1-p$, and assume that open- or closedness for all different bonds is chosen independently. The percolation probability is defined as

$$
\begin{equation*}
\theta(p)=P\{\text { the origin is part of an infinite connected open set in } \mathscr{L}\}, \tag{1.1}
\end{equation*}
$$

and the critical probability $p_{H}$ as

$$
\begin{equation*}
p_{H}=\inf \{p: \theta(p)>0\} . \tag{1.2}
\end{equation*}
$$

Hammersley [5], [6] proved

$$
\begin{equation*}
\frac{1}{\lambda} \leqq p_{H} \leqq 1-\frac{1}{\lambda} \tag{1.3}
\end{equation*}
$$

where $\lambda$ is the socalled connectivity constant of $\mathscr{L}(\lambda \approx 2.639$, see [9]). Harris [7] improved the lower bound to

$$
\begin{equation*}
p_{H} \geqq \frac{1}{2} . \tag{1.4}
\end{equation*}
$$

Various results and numerical evidence (see [17], or [15] Chap. III, for a brief summary) indicated that $p_{H}=\frac{1}{2}$, and most people seem to have accepted the truth

[^0]
[^0]:    * Research supported by the NSF under grant MCS-7703543

