Quasilinear Hyperbolic Systems

Tai-Ping Liu*

Institute of Physical Science and Technology, and Department of Mathematics, University of Maryland, College Park, Maryland 20742, USA

Abstract. We construct global solutions for quasilinear hyperbolic systems and study their asymptotic behaviors. The systems include models of gas flows in a variable area duct and flows with a moving source. Our analysis is based on a numerical scheme which generalizes the Glimm scheme for hyperbolic conservation laws.

We consider the initial value problem for quasilinear partial differential equations of the following form

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = g(x, u), \quad -\infty < x < \infty, \quad t \ge 0,$$
(0.1)

$$u(x, 0) = u_0(x), \quad -\infty < x < \infty.$$
 (0.2)

Here u = u(x, t) is an *n*-vector, *f* is a smooth *n*-vector-valued function of *u*, and *g* and $\frac{\partial g}{\partial u}$ are piecewise continuous *n*-vector-valued function of *x*, and are continuous in *u*. System (0.1) is assumed to be strictly hyperbolic, that is $\partial f(u)/\partial u$ has real and distinct eigenvalues $\lambda_1(u) < \lambda_2(u) < \ldots < \lambda_n(u)$ for each *u*. In general (0.1) and (0.2) do not possess smooth solutions, and we look for weak solutions, that is, solutions satisfying

$$\iint_{t \ge 0} \left(u \frac{\partial \varphi}{\partial t} + f(u) \frac{\partial \varphi}{\partial x} - g(x, u) \varphi \right) dx dt + \int_{-\infty}^{\infty} u_0(x) \varphi(x, 0) dx = 0$$
(0.3)

for any smooth function $\varphi(x, t)$ with compact support in $t \ge 0$. The purpose of this paper is to construct solutions for (0.1) and (0.2) and study their asymptotic behavior as the time variable t tends to infinity.

^{*} Partially supported by National Science Foundation Grant NSF MCS78-2202