Existence of Long-Range Order in the Migdal Recursion Equations

P. M. Bleher¹ and E. Žalys²

¹ Institute of Applied Mathematics, Academy of Sciences, Moscow, USSR
² Institute of Mathematics and Cybernetics, Academy of Sciences of Lithuania SSR, SU-232600 Vilnius, USSR

Abstract. A modification of XY-model is introduced for which Migdal recursion equation are exact. High- and low-temperature fixed points of these equations are investigated. As a result the existence of long-range order at low temperature and its absence at high temperature are proved rigorously for the model under consideration in the case when dimension d > 2.

1. Introduction

The renormalization group method is widely used in physical works on phase transitions (see for instance [1-6]). At the same time a rigorous application of the method has been possible only for a narrow class of models (see [7-11]). But the simplicity and generality of the main ideas underlying the renormalization group provide a strong motivation for using it as a tool for rigorous investigations.

In this paper we shall use the renormalization group method to prove the existence of long-range order at low temperatures in a modified *d*-dimensional XY-model, when d > 2. This model was first discussed in the papers by Migdal ([5, 6]) and was defined for all real values of the dimension *d* in the following way.

Let at first $d \ge 2$ and $v \ge 2$ be integers. We shall consider the hierarchical sequence of cubes V_n , n=0, 1, ... in *d*-dimensional Euclidean space \mathbb{R}^d :

$$V_n = \{x = (x_1, \dots, x_d) \in \mathbb{R}^d, 0 \leq x_i \leq v^n; i = 1, \dots, d\}$$

For every *n* the whole space \mathbb{R}^d is covered by cubes V_{n,a_m} which appear as shifts of the V_n by integer vectors $a_m = mv^n$, $m \in \mathbb{Z}^d$ proportional to v^n . Clearly, two cubes V_{n,a_m} , V_{n,a_m} , $m \neq m'$ either do not intersect or have a whole face in common.

Let us denote by S the set of closed (d-1)-dimensional elementary faces on the lattice \mathbb{Z}^d . Each face $s \in S$ is defined by an integer vector $m \in \mathbb{Z}^d$ (the point on the face with least coordinates assuming that the lexicographical ordering is introduced) and by the number *i* of the axis to which the face *s* in orthogonal. Thus each face can be written as $s_{m,i}$ where we denote the configuration space of the functions