

Dissipations on von Neumann Algebras

C. W. Thompson

Department of Mathematics, University of Manchester, Manchester M13 9PL, England

Abstract. We extend a characterisation by Lindblad of complete normal dissipations on hyperfinite von Neumann algebras to general semifinite von Neumann algebras.

Introduction

The time-development of certain quantum systems can be represented by oneparameter semigroups of completely positive maps on the associated C^* -algebras (see [4] for a discussion of the physical justification for this). When the semigroup is norm-continuous the infinitesimal generator is a bounded linear map on the C^* -algebra, and Lindblad [4] gives a characterisation of those linear maps which are infinitesimal generators of such semigroups. These he calls *complete dissipations*.

If we now take a von Neumann algebra \mathscr{A} and look at complete normal dissipations on \mathscr{A} , we would like to prove a result corresponding to the theorem that every derivation on a von Neumann algebra is inner. In [4], Lindblad shows that if $\theta: \mathscr{A} \to \mathscr{A}$ is completely positive then $\gamma_{\theta}: \mathscr{A} \to \mathscr{A}$ defined by

$$\gamma_{\theta}(a) = \theta(a) - \frac{1}{2} \{\theta(1)a + a\theta(1)\} \tag{1}$$

is a complete dissipation on \mathscr{A} , and it is clear that γ_{θ} is normal if and only if θ is. *Definition*. A complete dissipation γ on a C*-algebra \mathscr{A} is called *inner* if $\gamma - \gamma_{\theta}$ is an inner derivation for some completely positive map θ on \mathscr{A} .

Lindblad shows in [4] that every complete normal dissipation on a hyperfinite von Neumann algebra \mathscr{A} is inner. In [5] he uses the general theory of cohomology of operator algebras to show that the same is true for any type I von Neumann algebra, except that in this case he can only show that the range of the completely positive map θ is contained in $\mathscr{B}(H)$, where \mathscr{A} is considered as a weak-operator closed subalgebra of $\mathscr{B}(H)$ containing the identity map. However, since any type I von Neumann algebra is injective, there is an expectation from $\mathscr{B}(H)$ onto \mathscr{A} , so by the remark at the end of [5] we can choose θ with range contained in \mathscr{A} .