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Abstract. We consider the problem of determining from intrinsic properties
whether or not a given spacelike surface is a Cauchy surface. We present three
results relevant to this question. First, we derive necessary and sufficient
conditions for a compact surface to be a Cauchy surface in a spacetime which
admits one. Second, we show that for a non-compact surface it is impossible to
determine whether or not it is a Cauchy surface without imposing some
restriction on the entire spacetime. Third, we derive conditions for an
asymptotically flat surface to be a Cauchy surface by imposing the global
condition that it be imbedded in a weakly asymptotically simple and empty
spacetime.

I. Introduction

In the initial value formulation of general relativity, one starts with initial data on
a surface S and evolves that data to produce a maximal 4-dimensional region,
D(S)9 the Cauchy development of S (see [1] and pp. 244-255 of [2]). One goal of
the initial value problem is to find sufficient intrinsic conditions on the surface S
and its data which will guarantee that its Cauchy development D(S) is an
inextendible spacetime. (The surfaces A and B in Figure 1 have developments
which are extendible.) Such sufficient conditions are not known.

If D(S) is extendible, then there always exists a maximal extension M which is
an inextendible spacetime. (This is easily proved using Zorn's lemma [3].) Then,
one might ask whether there is some other surface 5" whose development is all of
M; i.e. D(Sf) = M. We prove a theorem which shows that if S satisfies certain
intrinsic conditions but is not a Cauchy surface for M, then M has no Cauchy
surface at all (i.e. M is not globally hyperbolic). Stated another way, these intrinsic
conditions on S are sufficient to guarantee that if M is globally hyperbolic then S is

* This research was supported in part by the National Science Foundation grants PHY 70-022077
and PHY 76-20029 as well as the National Aeronautics and Space Administration grant
NGR 21-002-010
** National Science Foundation Pre-doctoral Fellow

0010-3616/78/0061/0087/S01.80


