Comments on Mielnik's Generalized (Non Linear) Quantum Mechanics*

Rudolf Haag and Ulrich Bannier

II. Institut für Theoretische Physik der Universität Hamburg, D-2000 Hamburg 50, Federal Republic of Germany

Abstract. We discuss a model of non linear quantum mechanics in which the wave equation satisfies the homogeneity condition (2.1). It is argued that in this model the set of (mixed) states is a simplex.

I. The Setting

The term "state" of a system is customarily used in quantum physics for a statistical ensemble of (equally prepared) samples of the system. Since such ensembles may always be mixed the set \mathscr{S} of states is a convex set, i.e. with $\omega_1, \omega_2 \in \mathscr{S}$ and $0 < \lambda < 1$

$$\omega = \lambda \omega_1 + (1 - \lambda)\omega_2 \tag{1.1}$$

is again a state, namely the mixture of ω_1 and ω_2 with weights λ and $(1 - \lambda)$. The extremal points of the convex set \mathscr{S} (i.e. those states ω which cannot be represented as a mixture of others) are the pure states. We denote their set by \mathscr{E} . Since we shall be concerned here with the simplest possible generalization of ordinary quantum mechanics it suffices to consider the case where \mathscr{S} is "atomic" i.e. where every state ω is a countable convex combination of pure states¹

$$\omega = \sum \lambda_i \Phi_i, \quad \Phi_i \in \mathscr{E}, \quad \lambda_i > 0, \quad \sum \lambda_i = 1 .$$
(1.2)

Still \mathscr{E} will not determine \mathscr{S} because in general different mixtures of pure states may result in ensembles which are indistinguishable by any measurement. The limitations in observability introduce an equivalence relation (denoted by \sim) in

$$\omega = \int_{\mathscr{E}} \Phi d\mu(\Phi) \tag{1}$$

with μ a (positive, normalized) measure on $\mathscr E$

0010-3616/78/0060/0001/\$01.20

(1.3)

^{*} Dedicated to Professor Günther Ludwig on the occasion of his sixtieth birthday

¹ More generally one might take \mathscr{E} to be a measure space and replace (1.2) by