Commun. math. Phys. 59, 71-78 (1978)

An Inequality for Fermion-Systems

H. Nicolai*

Institut für theoretische Physik, Universität Karlsruhe, D-7500 Karlsruhe, Federal Republic of Germany

Abstract. It is shown that for certain classes of Euclidean fermion-boson systems on a lattice vacuum expectation values of scalar fields increase if a Yukawa-interaction is turned on. Applicability and possible extensions of this result in the framework of constructive quantum-field-theory are discussed.

1. Introduction

In recent times much of the progress made in constructive field theory has been due to the extensive use of correlation inequalities such as the Griffiths and Lebowitz inequalities ([1, 2] where original work is quoted). However, until now, the range of applicability of this powerful tool appears to have been limited to purely scalar theories. In this paper I want to show that by applying Griffiths' inequality one can derive an inequality for systems containing not only a scalar or¹ a pseudoscalar field but also a Majorana- or¹ Dirac-spinor.

To state the main result some notation must be introduced that will be used in the sequel. As the UV-limit will not be considered in this article the models are formulated on a periodic Euclidean space-time lattice \mathcal{T}^2 with lattice-spacing *a* whose elements will be denoted by k, m, n, \ldots where $n = (n_0, n_1, n_2, n_3)$; because of periodic boundary conditions there exists $N \in \mathbb{N}$ such that n_{μ} and $n_{\mu} + N$ are to be identified. Then the type of theory I will consider contains the following parts:

1) Bosonic part of the action

$$S_{0}(A) = a^{4} \sum_{n \in \mathscr{F}} \left\{ \frac{Z_{0}}{2} (\nabla_{\mu} A_{n})^{2} + \frac{m_{0}^{2}}{2} A_{n}^{2} + \lambda A_{n}^{4} \right\}$$

$$S_{0}(B) = a^{4} \sum_{n \in \mathscr{F}} \left\{ \frac{Z_{0}}{2} (\nabla_{\mu} B_{n})^{2} + \frac{m_{0}^{2}}{2} B_{n}^{2} + \lambda B_{n}^{4} \right\}^{3},$$
(1.1)

* Supported by Studienstiftung des deutschen Volkes

¹ Exclusive "or"

² For simplicity, I restrict myself to the case d=4. Most of the results of this paper can be recovered for d=2 and d=3 in a straightforward manner

³
$$\nabla_{\mu}\varphi_{n} := \frac{1}{2a}(\varphi_{n+\hat{\mu}} - \varphi_{n-\hat{\mu}})$$