Commun. math. Phys. 57, 187-191 (1977)

Amenability of Crossed Products of C*-Algebras

Jonathan Rosenberg*

Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19174, USA

Abstract. It is shown that the class of amenable (resp. strongly amenable) C^* -algebras is closed under the process of taking crossed products with discrete amenable groups. Under certain circumstances, amenability is also preserved under taking a "crossed product" with an amenable semigroup of linear endomorphisms. These facts are used to show that certain simple C^* -algebras \mathcal{O}_n studied by J. Cuntz are amenable but not strongly amenable (thus answering a question of B. E. Johnson), yet are stably isomorphic to strongly amenable algebras.

The purpose of this note is to prove stability of the classes of amenable and strongly amenable C^* -algebras under the process of taking crossed products with discrete amenable groups (and under certain circumstances, with discrete amenable semigroups). These facts are used to show that certain simple C^* -algebras \mathcal{O}_n , studied by Cuntz in [4], are amenable but not strongly amenable, yet are stably isomorphic to strongly amenable algebras. We thus answer a question of Johnson [7], who wondered if every amenable C^* -algebra is strongly amenable, and at the same time show that strong amenability is not preserved under "cutting down" by projections. The questions of whether amenability is a stable isomorphism invariant, and whether every nuclear C^* -algebra is amenable, remain open, and the example of the algebras \mathcal{O}_n seems to indicate that positive answers to these are at least plausible. The present results also show that a strongly amenable C^* -algebra

We use the following notation. If X is a Banach space, X^* denotes its dual. For $K \subseteq X^*$, coK denotes its weak-* closed convex hull. If A is a C*-algebra with unit, U(A) denotes the unitary group of A. If A is any C*-algebra, we use the notation A^{\sim} to mean A if A has a unit, A with identity adjoined otherwise. Recall that a C*-algebra A is *amenable* if and only if for every 2-sided unital Banach A^{\sim} -module X and for every continuous derivation $d: A \to X^*$, d is the coboundary of some element of X^* [7, p. 61]. (One may drop the continuity assumption on d since, by [8], every

* Partially supported by NSF